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Abstract—Inferring the location of a user has been a valuable
step for many applications that leverage social media, such as
marketing, security monitoring and recommendation systems.
Motivated by the recent success of Deep Learning techniques
for many other tasks such as computer vision, speech recogni-
tion, and natural language processing, we study the application
of neural networks to the problem of geolocation prediction
and experiment with multiple techniques to improve neural
networks for geolocation inference based solely on text. Exper-
imental results on three Twitter datasets suggest that choosing
appropriate network architecture, activation function, and
performing Batch Normalization, can all increase performance
on this task.
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I. INTRODUCTION

With the growth of social media, many novel applications

require inference on user attributes, such as gender, topics

of interest and geographical location. For example, most

recommender systems on news articles (or products) rely

on the user location to target potential readers (or buyers).

Geotagging social media posts can become a valuable tool

for predicting group behaviors and modeling populations

for consumer intelligence; marketing is often guided by

collecting and analyzing behavioral data regarding con-

sumer preferences among different locations. Recently social

networks have been leveraged to detect terrorism, track

virus spread, predict elections, model linguistic differences

between groups and inform users regarding natural disasters,

as well as coordinate aid and resources in such cases [1]–[3].

Social media services allow users to declare their location

by geotagging posts with GPS-based check-ins or by filling

a text field in their profile description. However, such text-

based descriptions are often missing, unstructured or non-

geographical (e.g., “the moon”) and thus unreliable and im-

precise, with only a tiny proportion of users geotagging their

posts [4]. Predicting user location is therefore essential for

creating the necessary location annotation and has attracted

increasing research interest.

Textual data such as user posts, as well as metadata,

i.e. users’ time zones or number of followers have been

exploited for geolocation prediction [4]–[6]. Moreover, con-

structing user-friend networks or user-mentions networks has

been studied for location inference, with hybrid approaches

*Contributed equally

achieving state-of-the-art results [7]. However, the use of

metadata limits the learned model on a specific corpus, since

metadata availability depends highly on the provider and can

vary among social media platforms (for example, Twitter

metadata that are available, such as timezone or number

of friends could be unavailable for other corpora, such as

Wikipedia). Extracting network information for each user

prevents real-time prediction, as it becomes time consuming

for large social networks with many edges, for example

Facebook, where most users have hundreds of “friends”.

On the other hand, text-based supervised approaches can

be easily adjusted to new datasets for real-time applications.

The difficulty of text-based geotagging is that social media

deviate from normal usage of language; emoticons, abbrevi-

ations and acronyms (e.g. “LOL”), the lack of conventional

orthography (e.g. adding more vowels - “loooooool”), new

words and meanings (e.g. “troll”) make text-based geotag-

ging a hard and complex task.

From a machine learning perspective, such a complex

task would require more effective feature construction than

simply combining surface features. In other words, it would

potentially benefit from using Deep Learning approaches.

Recently, Deep Learning has been demonstrating good per-

formance on various natural language processing (NLP)

tasks, such as language modeling, sentiment analysis, POS

tagging, named entity recognition and many others. An

attractive advantage of these methods is that they perform

well without the need of incorporating domain knowledge

in the form of time-consuming feature engineering or other

external resources. Deep Learning has been revolutionizing

both Computer Vision and NLP fields but Information Re-

trieval and Data Mining communities are only beginning in

exploring such methods. Moreover, there has been increasing

interest in both industry [8] and academia on applying Deep

Neural Networks to social media [9], [10].

Given the success of Deep Learning in so many appli-

cations, it is not surprising that it has also been applied to

geo-tagging recently [7], [11]. However, the performance of

neural networks in related research (e.g., [11]) is not as good

as other non-neural network approaches, leaving the question

open whether neural networks is a good approach to solving

this problem. Since the performance of Deep Learning is

known to be sensitive to the architecture design, choice of

activation, and other design decisions, in this paper we study

how to apply Deep Learning more effectively to solve the
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problem of text-based geotagging by systematically varying

all the major decisions including the activation functions,

layer and regularization choices with two different prediction

task formulations (i.e., as classification vs. regression) to

thoroughly study the impact of each component so as to

assess the full potential of basic neural networks for text-

based geo-tagging. Our experimental results show that by ap-

propriately configuring the neural network and using Batch

Normalization, we can indeed improve the performance

substantially over the performance reported in existing work

[11], [12], achieving comparable performance with the best

method proposed so far for this task. Given that we have

only explored optimizing configurations for a basic neural

network, it is reasonable to believe that with the application

of more advanced neural networks, the performance can be

improved further, which would be a very interesting future

direction for further exploration.

Specifically, we study the following questions:

1) Related work on the geolocation task improves per-

formance either by building complex pipelines and

hierarchies of regression models, or rigorous feature

extraction. Can we improve the performance on the

social media geolocation prediction with end-to-end

architectures that alleviate the need of advanced fea-

ture extraction techniques and complex combinations

of several components?

2) Batch normalization [13] has recently shown promise

in vision. Can it be beneficial for geo-tagging? How

effective is regularization, such as Dropout [14], in

the social media geolocation task, where most of the

datasets are highly imbalanced, as the majority of

users live in big cities, such as New York, Los An-

geles etc, leaving rural regions underrepresented? In

summary, what parameter and regularization choices

seem to work better for this task?

This is the first systematic analysis of advanced Deep

Learning techniques for geolocation prediction. Through

comprehensive experiments1, we make the following find-

ings:

• The choice of activation can affect performance signif-

icantly. (P)ReLUs are more robust to additional com-

ponents and have stable performance across all tasks.

• Batch normalization is highly effective in stabilizing

a neural geolocation model, speeding convergence and

increasing robustness across all tasks.

• These two components, alongside with proper weight

initialization produce state-of-the-art performance in

geolocation prediction, with respect to the optimized

metrics during training, i.e. accuracy and mean error

distance.

• There is still work remaining on how to optimize

additional evaluation components, that have not yet

1Our code is available at https://github.com/TIMAN-group/geoNN

been included in a proper neural network loss function,

such as median error distance.

II. RELATED WORK

Here we focus on the methods that predict user location

based solely on text from user posts. Quercini et al. [15] use

the contextual evidence, identified by geo-specific gazetteers,

in text to geo-tag news articles. Although the premature

success, there are several issues in applying this approach to

social networks. Taking Twitter as an example, the informal

language makes it difficult to construct the gazetteers, let

alone user tweets may not be solely about some homoge-

neous topic, thus complicating the importance of the contex-

tual evidence and finally tweets are very short texts, limiting

the information contained. A recent workshop on Twitter

geolocation prediction focused on prediction of metropolitan

cities, a classification problem [16], using both text and

metadata, while our work focuses on prediction based solely

on text. Metadata based approaches can improve accuracy

but are very specific to the corpus and the types of metadata

it makes available [17]. Text-based approaches generalize to

all types of data; supplementary information from metadata

can be incorporated to any text-based approach.

One of the early works in predicting user location is by

Cheng et al. [4] who propose a generative model for city-

level geolocation of U.S Twitter users that identifies words

in tweets with a strong local geo-scope (location-indicative

words). Their method calculates the posterior probability of

a user being from a city given his/her tweets. They also

experiment with different smoothing techniques.

Eisenstein et al. [5] create a geographic topic model by

treating tweets as documents generated by two latent vari-

ables, i.e., topic and region. They formulate the problem as

both a regression task that predicts geographical coordinates

and a classification task, where labels are either the 48

contiguous U.S. states or Washington D.C. or a division

between regions (West, Midwest, North-east and South).

Due to the computational complexity and efficiency issues of

generating topics, the model is limited to small datasets. An

important contribution of this work is the creation of the first

dataset available for the social media geolocation prediction

task, however one has to deal with sparsity issues due to

its relatively small size, for example some classes are not

represented on the training set.

There have been much subsequent studies using genera-

tive models [18], discovering a fixed hierarchical structure

over context, via a merging of global topics and regional

languages, while Ahmed et al. [19] extends the idea by

jointly modeling the location and user context, allowing for

an adaptive hierarchical structure for different users.

Wing and Baldridge [20] divide the geographic surface of

the Earth into uniform grids and then construct a pseudo-

document for each grid. Document similarity based on

language models and a nearest neighbors approach is used
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for prediction. The granularity of the grids is controlled by

a parameter. Uniform grids do not take into account the

skewness of the pseudo-document distribution; for example

metropolitan areas typically cover most of the twitter posts,

while rural areas face the issue of sparsity. Roller et al.

[6] address this issue by constructing grids using a k-d

adaptive trees, creating more balanced pseudo-documents.

They experiment on two datasets of geotagged tweets and

one dataset of geotagged English Wikipedia articles. A

limitation with this work is that it is unable to discover

shared structures in a location, without explicitly controlling

the grid sizes. More recently, Wing and Baldridge [17]

showed the effectiveness of using logistic regression models

on hierarchy of nodes in grids.

Han et al. [21] investigate several feature selection meth-

ods for identifying location-indicative words, such as In-

formation gain ratio, geographic density and Ripley’s K

statistic, as well as the impact of several additional features,

such as non-geotagged tweets and metadata on predicting

the city of a Twitter user or the actual coordinates.

Cha et al. [22] leverage sparse coding, PCA whitening

and dictionary learning for Twitter geolocation to create user

representations and then a voting-based grid nearest neigh-

bors approach. Their semi-supervised approach has shown

state-of-the-art results for the GeoText dataset [5]. However,

the performance increase is due to incorporating word order

information, i.e. word sequences, and therefore cannot be

applied to the already preprocessed datasets described below.

Liu and Inkpen [11] create the first Deep Neural Network

architecture for the geolocation task. A three hidden layer

(5000 neurons per layer) Stacked Denoising Auto-encoder,

paired with great-circle distance as a loss function and early

stopping is tested on two Twitter datasets. However, little

insight was given on how the choice of different components

affects performance, for example the activation function, the

number of layers, pre-training or parameter tuning.

Rahimi at el. [12] use Mixture Density Networks [23]

for Twitter user geolocation and lexical dialectology. They

cast the problem in a classification task and showed that it

outperforms regression models by a large margin. By sharing

the parameters of the Gaussian mixtures they achieve com-

petitive results with state-of-the-art classification models.

Our work advances the Deep Learning approach and

shows that carefully designed architectures can achieve

better performance than complex models. We provide the

first comparison on how the choice of activation functions,

number of neurons per layer, initialization and regularization

affects performance on predicting the actual geographical

user coordinates, as well as classifying users per state or

region. As most applications of Deep Learning advance

by improving known models, this work serves as a good

starting point that could benefit DNN practitioners and

researchers to identify areas for further improvements in

“neural geotagging”.

Datasets
Dataset Name Users Sample Size Region

GeoText 9.5K 380K tweets Contiguous US
TwUS 450K 38M tweets North America

TwWORLD 1.4M 12M tweets English World Wide

Table I: Datasets summary

III. DATASETS

We compare our performance with previous text-based

systems built on three publicly available datasets from

Twitter. To the best of our knowledge, these are the data

sets used in previous related work on the twitter text-

based geolocation task, while their differences in terms of

number of users make them appropriate for comparison of

architectures with respect to the availability (or lack) of

social media data. See Table I for a summary.

• GeoText is a dataset from Eisenstein et al. [5] that con-

tains 380,000 tweets from 9,500 users with geograph-

ical coordinates for each user. All users come from

the contiguous United States (i.e., the U.S. excluding

Hawaii, Alaska and all off-shore territories).

• TWUS is a dataset of 38M tweets from 450K users

located in North America compiled by Roller et al.

[6]. Each training example is the collection of all

tweets by a single user, where the earliest geotagged

tweet determines the user’s location. The dataset is

already split in training, development and test sets,

where 10,000 users are reserved for the development

and test sets.

• TWWORLD is a dataset of tweets from 1.4M users

(with 10,000 reserved for the development and test sets)

compiled by Han et al. [21]. While TWUS is limited to

the United States, this dataset covers the entire Earth.

Non-English tweets and those not near a city were

removed, in addition to filtering non-alphabetic, overly

short and overly infrequent words.

IV. TASK DEFINITION

A. Models
To evaluate the sensitivity of our models to different

tasks and compare our work with the previous literature,

we predict the location of a Twitter user, either the exact

coordinates (regression), U.S. state or region (classification),

based only on the user posts. We first describe the input and

output of our models:

B. Input Features
Wing and Baldridge [17] have already pre-processed and

released the aforementioned datasets in the format

[M ] [term1][count] . . . [termN ][count]

where [M ] is a Twitter user’s id and the [count] associated

with each term is how many times that term appeared in the

user’s posts.
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Figure 1: Our neural models for Geolocation

We therefore use a bag-of-words text representation and

extract TF-IDF features, considering only the 50000 most

frequent unigrams. We have also tried other textual repre-

sentations, such as frequency counts, binary (presence or

absence of a word) and averaged word embeddings, however

our preliminary experiments indicated that TF-IDF produces

the best results.

C. Model Output/Prediction tasks

Most of the previous literature only predicts the coor-

dinates of the user location. Following Liu et al. [11],

we provide results for the classification task, where each

user is classified into a geographical region, either the 48

contiguous U.S. states or Washington D.C. (49 classes) or

four classes, which represent the main four U.S. regions as

defined by the Census Bureau2: the West, Midwest, South,

and Northeast. We also report performance on the regression

task, i.e. predicting the actual geographical coordinates.

All of our models therefore have the same output layers

with respect to the task at hand:

• Linear layer with 2 neurons for the regression task, i.e.

latitude and longitude coordinates

• Softmax layer with 49 or 4 neurons for the state and

region classification tasks, respectively.

V. ARCHITECTURES

We developed a three hidden layer network and vary

all other several components. Below we present some of

the parameter choices and discuss how these might affect

performance. Figure 1 illustrates our proposed models3.

A. Loss Functions

The objective function of our models depends on the task.

We use the same loss functions as [11]. More specifically,

for the classification tasks we used categorical cross entropy.

When the output layer activation is the softmax function,

categorical cross entropy can also be interpreted as the

2https://www2.census.gov/geo/pdfs/maps-data/maps/reference/us regdiv.pdf
3Our models are developed with Keras [24] and Theano [25] as backend.

negative log likelihood or the KL-divergence between the

output distribution and the target distribution, and is a typical

loss function used in the Deep Learning literature.

For the prediction task, since the models produce loca-

tion latitude and longitude coordinates, we can define the

objective function as the great-circle distance between the

estimated and actual coordinates, which can be calculated

by the haversine formula:

d = 2r arcsin
(√

α
)

(1)

α = sin2
(ϕ2 − ϕ1

2

)
+ cos(ϕ1) cos(ϕ2) sin

2

(
λ2 − λ1

2

)
(2)

where

• r is the Earth radius

• ϕ1,ϕ2 and λ1,λ2 are the latitude and longitude of the

predicted and true coordinates

• d is the final calculation of the distance, and conse-

quently our error loss function.

B. Design choices: activation functions, weight initializa-
tion, regularization methods

Our selection of activation functions consists of one non-

linear (sigmoid) and one linear non-parametric function

(ReLU), as well as a parameterized linearity (PReLU). He

at al. [26] propose a ReLU adjusted version of the Xavier

weight initialization [27]. More specifically, initializing the

weights of each neuron by drawing them from a distribution

with zero mean and variance V ar(W ) = 2
nin

where W is the

initialization distribution for the neuron (usually Gaussian

or uniform) and nin is the number of neurons from the

previous layer that are passing a signal to this neuron,

offers better guarantees in terms of gradient-based weight

updates. Moreover, recent work [13] has shown that ensuring

a stable distribution of non-linearity inputs during training

could prevent the optimizer from getting stuck in a saturated

regime, and the training would accelerate as the use of

higher learning rates would not be an issue. Adding a

linear layer before activation functions to perform batch-wise

normalization (called “Batch Normalization”) also solves the

problem of ReLUs, in addition to regularizing the model

and reducing the need for other regularization techniques,

such as Dropout. To our best knowledge, this is the first
work that applies Batch Normalization to social media posts.

Dropout is a very simple regularization technique [14] that

prevents over-fitting and speeds up training by randomly

disabling neurons with a probability p (common choices are

p = 0.25 or p = 0.5) in the learning phase. This prevent

weights from converging to identical positions, as for each

training example a different set of neurons is randomly

“dropped”, which results in robust feature representations

that can generalize better to new data. We experiment with

both regularization techniques; we will discuss our results

later on.
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C. Hyper-parameter choices

We tune the rest of the hyper-parameters with Tree-

structured Parzen Estimator (TPE), a Bayesian sequential

model-based optimization approach described in Bergstra et

al. [28]. Learning rates we explore are: {0.1, 0.01, 0.001,

0.0001}. The maximum number of epochs is set to 1000,

however we terminate training when the validation accuracy

stops improving after a number of steps (in our case 20),

known as Early Stopping [29]. This technique prevents over-

fitting, with most of our configurations to finish training

in approximately 100 epochs. Batch size was set to 64 for

GeoText and 512 for TWUS and TWWOLRD.

Finally, we experiment with several optimizers and our

final choices are ADAGRAD [30] for the classification task,

with 10−8 learning rate decay over each update, which

dynamically adapts the learning rate to the data and Stochas-

tic Gradient Descent (SGD) for the regression tasks, with

10−6 learning rate decay over each update and 0.9 Nesterov

momentum [31]–[33]. In our experiments we discovered that

adaptive gradient-based optimization algorithms decreased

the performance for the regression tasks, which is mainly

due to our choice of cost function: our error range is

of thousands of kilometers, and it seems that performing

updates based on the slope of the error function as SGD

does works better than adjusting the updates based on the

feature frequencies.

VI. EXPERIMENTAL RESULTS

A. Performance Metrics

We use the same performance metrics as previous work in

text-based geolocation inference. For the classification tasks,

we compare performance in terms of accuracy, which is

defined as the proportion of users in the test set that are

correctly classified. For the regression task, the performance

metrics were introduced by Cheng et al. [4]: the mean

error distance and the median error distance (in kilometers)

between the predicted and the actual location, as well as

accuracy within a 161km radius.

We present our results and compare with the related

existing work that performs the same tasks, i.e. classification

w.r.t to the U.S. state or region and prediction of the

coordinates.

B. Discussion of the Results

For the GeoText dataset, Liu and Inkpen [11] provide the

labels for the classification task. Using reverse geotagging,

the authors were able to retrieve the city, state and country

for each example in the dataset. We utilize these labels to

perform the classification task. For the rest of the datasets,

we follow previous literature and report the latitude and

longitude predictions.

GeoText
States

Dev(Test) Acc %

#neurons
per layer

Activaction
Function

No
Regularization

BatchNorm
BatchNorm
+ Drop(0.5)

128

PRELU

39.0 (38.8) 40.7 (39.4) 41.3 (41.7)

512 40.1 (39.7) 42.3 (42.8) 42.9 (43.3)

1024 37.5 (37.5) 43.2 (44.2) 43.7 (43.2)

4096 26.5 (26.2) 43.7 (43.0) 44.3 (44.3)

128

RELU

38.8 (37.3) 40.7 (40.4) 33.7 (33.4)

512 37.9 (37.7) 43.2 (42.6) 42.1 (42.9)

1024 32.9 (34.7) 43.3 (43.3) 43.9 (43.2)

4096 26.5 (26.2) 44.1 (43.2) 44.0 (44.4)

128

Sigmoid

32.8 (31.9) 40.9 (42.5) 41.0 (40.9)

512 32.5 (32.6) 42.0 (41.7) 43.2 (42.5)

1024 30.1 (30.5) 42.3 (42.6) 43.5 (43.3)

4096 4.2 (4.6) 40.8 (41.2) 42.8 (42.9)

Table II: Batch Normalization and Dropout effect on Geo-

Text held-out development (test) set; U.S. states classifica-

tion task

1) Classification tasks: We first note here that the two

classification tasks have different levels of difficulty: in the

states classification, the dataset is divided into a very skewed

distribution that favors states with metropolitan areas, such

as New York, whereas rural areas are underrepresented.

This phenomenon and the number of classes in total (49)

increases the complexity of the task. Regions classification

can be considered easier than the states classification and as

we will see it does not require complex models compared to

the states classification, which is more prone to over-fitting.

Table II presents a comparison of activation functions

across different hidden layer sizes, and how Batch Normal-

ization and Dropout affects the performance in the states

classification task. Without Batch Normalization, we see

that the ReLU activation function works better than other

options. In general, Batch Normalization seems highly valu-

able in improving performance, irrespective of the activation

function choice. The sigmoid activation function has by far

the highest performance increase and is producing the best

results. However, performance differences among activation

functions are diminished; the highest development accuracy

with Batch Normalization is 44.00% with ReLU activation

functions. We also report results for varying Dropout across

different hidden layer sizes. In all cases, Dropout’s affect

on the performance is marginal. The best architecture is

PReLUs with 4096 neurons and all regularization methods,

with 44.3% accuracy in the development set.

In Table III we present the same comparison for the

regions classification task. Batch Normalization helps in

regularizing wider network architectures, but it’s effect is

overall limited. Dropout also adds a small improvement. The

best accuracy is now produced with ReLUs at 67.4% and

68.5% without or with Dropout, respectively. Surprisingly,

all of our experiments do not exceed the 67% accuracy level

on the development set.
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GeoText
Regions

Dev(Test) Acc %

#neurons
per layer

Activaction
Function

No
Regularization

BatchNorm
BatchNorm
+ Drop(0.5)

128

PReLU

68.1 (66.0) 66.1 (63.9) 66.5 (64.8)

512 66.6 (64.5) 67.2 (65.9) 68.3 (66.5)

1024 66.5 (65.1) 66.1 (65.5) 67.2 (66.3)

4096 38.3 (37.4) 65.8 (64.1) 68.5 (66.1)

128

RELU

67.8 (66.6) 66.4 (64.2) 67.5 (65.9)

512 66.6 (65.9) 67.4 (66.3) 68.5 (66.7)

1024 66.8 (65.8) 66.1 (65.5) 67.0 (67.3)

4096 38.3 (37.4) 65.9 (63.5) 68.4 (66.6)

128

Sigmoid

63.8 (63.5) 65.8 (64.0) 67.0 (65.9)

512 66.6 (65.1) 64.7 (63.8) 67.3 (66.8)

1024 36.4 (35.9) 64.9 (63.3) 65.7 (65.7)

4096 38.3 (37.4) 63.7 (61.3) 66.8 (64.9)

Table III: Batch Normalization and Dropout effect on Geo-

Text held-out development (test) set; U.S. regions classifi-

cation task

2) Regression task: For the regression task (Fig. 2),

we see again that Batch Normalization is improving all

configuration settings. We check whether the combination of

both regularization methods would further improve results;

Dropout has limited effect on the performance. In our

experiments, we found that the best architectures are shallow

and wide networks without Dropout, with PReLUs and

Sigmoid activations for TWUS and TWWORLD, respec-

tively. For GeoText, a denser ReLU network gives the best

performance.

Overall, Dropout is extremely sensitive to the complexity

of the task, while Batch Normalization is a robust technique

that improves performance and speeds convergence. We are

certain that Batch Normalization could continue to be one

of the main components in improving the neural models

for geolocation prediction. Interestingly, this method has

also achieved better than human-level performance on the

ImageNet visual recognition challenge.

3) Number of Layers vs. Number of Neurons: We also

varied the number of neurons per layer as well as the

number of hidden layers for all tasks. In Figure 3, we

present the hidden layer size variation for the GeoText states

classification task as well as the regression task in GeoText

and TWUS, on our best performing models.

We can see that the optimal architecture with respect to

the hidden layer size is task and data dependent, where “no

solution fits all”. For the classification task, there is a slight

increase of performance as the number of neurons per layer

increases. For the GeoText regression task, the performance

is inversely proportional to the number of neurons per layer,

however both TWUS and TWWORLD present the exact

opposite case; performance increases by adding more neu-

rons. GeoText is the smallest and most imbalanced dataset

in our evaluation. Given that the availability of social media

data has been increased in the past years, we argue that

Deep Learning can further improve geolocation prediction;

dropout hidden activation layers

GEOTEXT
states

0.5 4096 PReLU 3

GEOTEXT
regions

0.5 512 ReLU 3

GEOTEXT
regression

0.5 128 ReLU 3

TWUS 0 4096 PReLU 5

TWWORLD 0 4096 Sigmoid 3

Table IV: Best performing hyper-parameter settings of our

proposed geolocation prediction models

we leave the discovery of new architectures to future work.

Moreover, we varied the number of hidden layers for our

best architetures. The same pattern appeared in both tasks,

as shown in Figure 4, suggesting compact architectures for

the regression task and shallow and wide architectures for

classification tasks.

Our final hyper-parameter choices are summarized in

Table IV.

C. Comparison with Related Work

With respect to previous related work on text-based ge-

olocation, we present results from our best architectures

(models chosen based on the performance on the appropriate

development data sets and trained on full datasets per epoch).

We achieve state of the art in the classification tasks (table

V). We should note that for the GeoText regression task

(table VI), Cha et al. [22] improve performance on GeoText

by leveraging word sequences. As the rest of the prior work

operates on TFIDF input representation, we choose the same

for fair comparison, and report both results of Cha et al.

on the regression task, i.e. using word counts and word

sequences. We leave the addition of temporal information

to future work. For TWUS and TWWORLD, our results on

tables VII and VIII also show comparable performance with

related work, with lower mean in all cases, including the

recently proposed neural models [7], [11]. Since the mean

error is the objective function used in our experiments, this

is a good indication that Deep Neural Networks are well

suited for geolocation prediction, leaving room for future

improvement.

VII. ERROR ANALYSIS

To further understand what types of mistakes the model

makes we a used geo-coordinate visualization, Carto4. In

Figure 5a we show the clusters of the ground truth data,

i.e. the correct latitude and longitude, here we choose seven

clusters to correspond to different regions of the United

4https://carto.com/
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Figure 2: Batch Normalization and Dropout effect - regression tasks (coordinates prediction)

Figure 3: Varying number of neurons per layer

Figure 4: Varying number of layers

GEOTEXT Accuracy (%)

Models
States

(49-way)
Regions
(4-way)

Proposed method 44.3 67.3
Liu and Inkpen, 2015 (SDA) 34.8 61.1

Eisenstein et al., 2010 (Geo topic model) 24 58
Cha et al., 2015 (SC+all - including word sequences) 41 67

Table V: Performance comparison on GeoText held-out test

set - states and regions classification tasks

States; each cluster here is represented by a different color.

Using those clusters we show our predictions in Figure

5b. The visualization is also available online5, and it also

contains widgets for filtering by distance errors.

One observation we make from our predictions, is that

in some cases we predict locations in regions consisting of

5https://amorale4.carto.com/builder/a77e1130-e1dd-11e6-9d31-0e98b61680bf

GEOTEXT Geolocation Error (km)

Models Mean Median Acc@161

Proposed method 747 448 29
Rahimi et al.,2017 (MDN-SHARED) 865 412 39

Liu and Inkpen, 2015 (SDA) 856 - -
Cha et al., 2015 (SC+all - word counts) 926 497 -

Cha et al., 2015 (SC+all - including word sequences) 581 425 -
Roller et al.,2012 (UnifKdCentroid) 890 473 34

Roller et al., 2012 (KdCentroid) 958 549 35
Roller et al., 2012 (UnifCentroid) 897 432 36
Wing and Baldridge, 2011 (KL) 967 479 -
Eisenstein et al.,2011 (SAGE) 845 501 -

Eisenstein et al., 2010 (Geo topic model) 900 494 -

Table VI: Performance comparison on GeoText held-out test

set - regression task (coordinates prediction)

water, using the spacial and other network information we

could potentially further calibrate such predictions.

In the smallest dataset GeoText, we found several issues

concerning imbalance of the data. For example, in the
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TWUS Geolocation Error (km)

Models Mean Median Acc@161

Proposed method 570 223 43
Rahimi et al.,2017 (MDN-SHARED) 655 216 42

Liu and Inkpen, 2015 (SDA) 733 377 24
Wing and Baldridge, 2014 (HierLR Uniform) 704 171 49

Wing and Baldridge, 2014 (HierLR k-d) 687 191 48
Han et al., 2014 (IGR) - 260 45
Han et al., 2014 (LR) - 878 23

Roller et al.,2012 (UnifKdCentroid) 913 532 33
Roller et al., 2012 (KdCentroid) 860 463 35

Roller et al., 2012 (UnifCentroid) 956 570 31

Table VII: Performance comparison on TwUS held-out test

set (coordinates prediction)

TWWORLD Geolocation Error (km)

Models Mean Median Acc@161

Proposed method 1338 495 21
Wing and Baldridge (2014) & HierLR Uniform 1715 490 33

Wing and Baldridge (2014) & HierLR k-d 1670 509 31
Han et al. (2014) & IGR - 913 26
Han et al. (2014) & LR - 640 23

Table VIII: Performance comparison on TWWORLD held-

out test set (coordinates prediction)

classification tasks there are were some states which were

not at all represented in the training or development set but

appeared in the test set. Moreover, for the regression task

we found one point that was in fact in Europe. We did not

remove these points to make our results comparable to the

other approaches, however future research should be weary

of using this dataset.

In Figure 6a we show the imbalance of the Geotext. For

reference, the top four labels with the majority of labels

correspond to New York (2), California (3), Georgia (20),

and Florida (8) with 486, 195, 121, and 100 number of

testing examples respectively. The normalized confusion

matrix in Figure 6b, shows that most of the categories

with low number of examples are miss-classified as one of

the majority class. Despite such discovery of limitations,

our experiments on three varying-sized datasets, GeoText,

TWUS and TWWORLD, validate that Deep Learning tech-

niques can be utilized for improving performance on the

geolocation task.

New York Dallas Los Angeles San Francisco Miami

cashmere sundance fitzpatrick engineers clemson
authenticity bachmann 2pac bot preseason

trousers immigrants guste gadgets lansdowne
chadwick administration morningside workflow brewery

pearls socialist alvaro ristorante ginza
lakeshore opposition footlocker execute pike
afterparty earthquake dreads sashimi obsolete
fishbowl occupywallstreet cuffed geniuses jameson
wahlberg brutality afterhours dinero thunderstorm
mcqueen bankrupt calvary unfriend ethnic

Table IX: Selected words with smallest average median

distance errors in selected areas (TWUS)

(a) Ground Truth, clusters (b) Our model predictions

Figure 5: TWUS dataset clusters and visualization

(a) Raw counts (b) Normalized counts

Figure 6: Confusion matrices for the Geotext data.

In Table IX, we show the words with the smallest average

distance errors for different cities. Our model is able to

distinguish several location-indicative words. It finds many

restaurants local to a particular city, for example ‘Chadwick’

is a popular Brooklyn restaurant, ‘Ristorante Milano’ is a

restaurant in San Francisco and ‘Ginza’ is the name of a

highly rated Japanese Buffet in Miami. The model is also

able to distinguish vernacular in twitter for those locations.

In New York City there are frequent mentions of clothing

brands and their quality, which makes sense since it is often

described as the fashion capital of the U.S.; in San Francisco

technology terms are also expected since it is located close to

Silicon Valley; Miami has many terms associated to sports,

for example ‘Lansdowne’ is a popular sports theme bar

and ‘Clemson University’ corresponds to the sport rivals of

‘Miami University’.

It is surprising to see that Los Angeles and Dallas are

very different in terms of language usage, having no clear

location-specific topics. On the other hand, Miami describes

the populous movement, “occupy wall street” as well as

the problems associated with, such as police brutality and

banking bailouts, while in Los Angeles the terms are more

related to physical appearance. These terms show that tweets

have some dynamic property to them and thus we could

incorporate methods that utilize temporal aspects, such as

event discovery, to learn better location-indicative terms.

VIII. CONCLUSION AND FUTURE WORK

We experiment with neural network architectures for

predicting the location of social media users. We explore

which parameters affect the evaluation metrics and how our
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careful choices can increase the performance. Experimental

results show how each of these hyper-parameter changes

impacts our models, and which modules increase the model

performance, for example the initialization of the weights

leads to better convergence, Batch Normalization leads to

better regularization. We show that Batch Normalization has

the highest performance increase and that Dropout seems to

have an overall mixed effect with minor improvements.

Our models produce results that either advance the state-

of-the-art or leave room for systematic improvements. Be-

yond highlighting the key components that improve robust-

ness and the limitations of the smaller datasets, we move on

to provide an error analysis and linguistic analysis of our

models, while our prediction errors can be further analyzed

through a visualization made available online. Our analysis

provides valuable understanding on how to search for the

optimal architecture, taking into account the task setup. This

can be particularly useful in the case of transfer learning; for

example when the classification task is refined, what options

are available for keeping the performance at the same level.

Furthermore, additional error analysis can provide more

guidance to building on this work, which we hope to do in

the future. While our focus in this work was mainly a general

text-based neural model for geolocation prediction, it would

also be worth to investigate the effect of additional informa-

tion beyond text, such as metadata or user information, as

neural networks are also well suited for incorporating such

features.

Our exploration is by no means exhaustive. A more inter-

pretable variation should be able to better capture linguistic

similarities among Twitter users and jointly learn “user

embeddings” alongside with word embeddings. There is

additional potential for further improvement by exploring

unlabeled social media data with unsupervised techniques,

such as pre-training with autoencoders or adding social

network and word order information with architectures, such

as siamese [34], convolutional or recurrent networks [35]–

[37] and network embeddings [38] that would facilitate such

user/word representations and might advance the (neural)

geolocation task.
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