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Abstract. We survey recent work on multi-agent reinforcement learning
(MARL), which is occupied mostly with stochastic games. We briefly
mention the single agent approach where the presence of other agents is
considered part of the environment and present work on extending this
scenario to multiple agents. These situations arise in a wide spectrum
of domains such as robotics, economics, distributed control, auctions,
communications etc., where the optimal policy of an agent is dependent
on the policies of other agents. In such cases, and especially when the
overall control of the system is decentralized, coordination with other
agents or modeling the conflicting objectives is crucial. Since the field of
MARL is very broad, we focus on techniques that exploit the structure
of the RL problem by learning value functions as a first step towards
learning more about this research area. This paper also provides MARL
algorithms where Game Theory has made essential contributions and we
argue that a closer connection between these two fields in necessary for
advancing the field.
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1 Introduction

Multi-agent systems model dynamic and nondeterministic environments that
solve complex problems in a variety of applications such as financial markets,
traffic control, robotics, distributed systems, resource allocation, smart grids etc.

When systems are inherently decentralized, either in the case of distributed
systems where data are located in different servers or when there is no central
controlling component to coordinate the request in resources from subcompo-
nents, or simply in the general case of dealing with multiple, possibly conflicting,
objectives, single-agent reinforcement learning cannot fully model and exploit
such dependencies. Many examples fall into this category, with most interesting
ones to be robot interaction (for example in Robocup), load balancing or even
web search engines [10].

Moreover, in environments where coordination of agents is needed, sharing
experience can help agents to accomplish shared or similar tasks faster and
better, as well as increase scalability of the system; in the case of failure of one
agent, the task can be assigned to another agent or we can also easily insert new
agents into the system.
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In these situations we are dealing with agents that not only have to learn an
optimal behavior or policy, but also have to adapt to new situations, where we
assume a changing environment that requires multiple sequential decisions. In
such a complex task definition, agents are required to coordinate while taking
into consideration the state of their environment.

This scenario becomes increasingly complicated when we are dealing with
limited or incomplete information about the overall system. More particularly,
an agent may not even be aware of the presence of other agents, making the
environment non-stationary. Even in the case of complete information, learning
a fully joint state-action space can be computational intractable with respect to
the number of agents and the level of coordination required between them.

There are many categorization schemes of Markov Games: independent learn-
ing versus joint action learning, general Markov games versus normal form
games, continuous action space versus discrete action space etc. In this sur-
vey, we present recent work that extends the single-agent reinforcement learning
framework by borrowing results and equilibrium definitions from Game Theory.
We focus on joint-action learning, so as to restrict ourselves to review only tech-
niques that combine reinforcement learning driven by game-theoretical advances.

2 Markov Decision Processes

Markov Decision Processes (MDPs) provide the mathematical framework for
modeling decision making with single agents operating in a fixed environment.
Therefore, we do not explicitly model secondary agents, which can also be viewed
as part of the environment.

A Markov decision process is defined by a tuple {S,A, T,R} where

– S is the set of states
– A is the set of actions
– T : S × A → p(S) is the transition function that defines the probability

distribution over the next states as a function of the current state and the
action taken

– R : S×A→ R is the reward function which determines the reward received
by the agent as a result of choosing an action in a given state

The agent’s objective is to find the optimal strategy π that maximizes his
future expected reward (expected sum of discounted reward)

V π(S) = E[

∞∑
j=0

γjrt+j ] (1)

where rt+j is the reward received j steps into the future and 0 ≤ γ ≤ 1 is a
discount factor that models the importance of future rewards. A discount factor
close to 0 will result in an agent driven mostly by short-term rewards, while an
agent with discount close to 1 will have an optimal policy that works towards
long-term high reward.
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The value V π(s) of a state given a policy is the expected return starting
from state s and following the policy, while the state-action value Qπ(s, a) is
the expected return starting from state s, taking action a and follow the policy
afterwards. By computing these values, we can find the optimal policy.

Every Markov decision process has at least one stationary, deterministic op-
timal policy π∗ : S → A; stationary means that the policy does not change as
a function of time, while deterministic means that the same action is always
chosen in state s for all s ∈ S. Optimal means that the policy is undominated:
there is no state from which any other policy can achieve a higher expected sum
of discounted reward.

Algorithms for solving MDPs are clustered into two groups with respect to
the transition function. When we assume that the transitions from a state to an-
other state are known and given, we are dealing with a Dynamic-Programming
setting, where planning is our main focus and convergence is guaranteed [3].
Thus, algorithms such as Value iteration or Policy iteration are included in this
category. On the contrary, when the transitions are unknown, we are in the Re-
inforcement Learning (RL) setting, with algorithms that require online updates
or sampling of sequences from the MDP to solve the optimization problem. One
of the most popular algorithms in RL is Q-learning. We will briefly mention
Value iteration and Q-learning, as we will see how they can be extended to the
multi-agent case. We refer the reader to [13] for a detailed view of RL.

2.1 Value Iteration

In Value Iteration [1] we start at time step t = 0 with a random initialization of
the value function and then repeatedly compute Vt+1 for all states s using the
equations (2) and (3) until convergence.

Q(s, a) = R(s, a) + γ
∑
s′∈S

T (s, a, s′)V (s′) (2)

V (s) = max
a′∈A

Q(s, a′) (3)

The optimal policy can be computed as a∗ = argmax
a′∈A

Q(s, a′).

2.2 Q-learning

When the transition function is unknown, an update is performed by an agent
whenever it receives reward r when making transition from s to s’ after taking
action a.

Q(s, a)← Q(s, a) + η(r + γmax
a′∈A

Q(s′, a′)−Q(s, a)) (4)

or equivalently
Q(s, a)← (1− η)Q(s, a) + η(r + γV (s′)) (5)

where η is the learning rate (usually initialized to 1.0 and decays over time)
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Q-learning [16] is proved to converge if every action is tried in every state in-
finitely often and new estimates are blended with previous ones using a slow
enough exponentially weighted average [15]

We continue with the framework for Markov Games and algorithms for
MARL.

3 Stochastic Games

Stochastic or Markov games were proposed as the standard framework for mod-
eling multiple adaptive agents with interacting or competing goals [9]. Markov
games still assume that state transitions are Markovian, however the differ-
ence with the single-agent MDP framework is that each agent has its own set
of actions. For n agents, the joint-action space is A = A1 × A2 × . . . × An.
The state transition T : S × A1 × . . . × An → p(S) and reward functions
Ri : S × R1 × . . . × Rn → R now depend on the joint action of all agents.
Similar to the MDP objective, agent i is trying to maximize his expected reward
under a joint policy π = (π1, . . . , πn), which assigns a policy πi to each agent i:

V πi (s) = E[

∞∑
j=0

γjri,t+j ] (6)

Contrary to the MPD case, there may not exist an optimal stationary de-
terministic policy, meaning that the optimal stationary policy is sometimes
probabilistic; mapping states to discrete probability distributions over actions
π∗ : S → p(A). The best response and Nash equilibrium concepts can be ex-
tended to such games: a policy πi is the best response if there is no other policy
for agent i that gives higher expected future reward when other agents keep their
policies fixed.

If we assume only 1 agent, or the case where other agents play a fixed policy,
the Markov game reduces to an MDP.

When the Markov game has only 1 state, it reduces to a repeated normal
form game, a common benchmark for multi-agent learning in which players si-
multaneously select an individual action to perform and receive a reward based
on their joint action, after which the game ends. Thus, there is no state transition
function and there is no delayed reward, which is one of the most essential prop-
erties of RL. However, since we are considering other agents’ behavior (policies),
we are still dealing with non-stationary environments. Methods in this particu-
lar category turn efforts towards adapting policies that depend on the actions of
other agents.

4 Algorithms for General Markov Games

4.1 Assumptions

In the general RL setting, which is also applied here, we assume that agents
do not have access to the reward function or are aware of the expected reward
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from playing a joint action. In addition to this, we also assume that joint actions
do not produce the same deterministic reward for each agent, i.e. payoffs are
stochastic. Sampling these joint actions repeatedly is a necessity.

In contrast to the general RL methods, we also make assumptions regarding
the observations that agents make. Due to the dependence on other agents’ strat-
egy, most MARL methods assume that either actions of all participating agents
or rewards (or both) are observed from all agents. Although this help us model
opponents and learn over joint actions, it may be unrealistic to assume such
common knowledge, especially in distributed systems where such information is
usually not be available.

A major division of algorithms for MARL is whether we are considering other
agents as part of the environment (Independent Learning) or we explicitly try to
model other agents (Joint Action Learning). We begin with a brief description
of the first setting and then we continue with a description of several algorithms
for the second one, which is the main focus of this work.

4.2 Independent Learning

As mentioned above, here we reduce the multi-agent case to a single-agent learn-
ing problem where interaction with other agents is implicitly perceived as noise.
Traditional reinforcement learning algorithms, such as SARSA or Q-learning can
be used in this case, however convergence guarantees are no longer available due
to the stochasticity in the environment from the other agents. Moreover, there
is no mechanism for coordination, which is particularly useful for decentralized
systems.

4.3 Joint Action Learning

In this setting we explicitly consider other agents by learning in the space of
joint actions. Thus, the framework becomes appropriate for modeling coordina-
tion among agents, but the algorithmic complexity grows exponentially with the
number of agents. Another disadvantage that was previously described is that
an agent has to make assumptions regarding the opponents’ strategies to predict
their future actions.

We provide a description for most of the algorithms that extend the Q-
learning for multi-agent RL. Here, the agent estimates Q(s,a) for taking the
joint action a = a1, . . . , an in state s. Since the actions of other agents can vary,
the agent does not have one estimate for the reward he will receive by taking
action ai in state s, but instead he has to keep estimates for each combination of
his action ai and the joint action a−i played by the other agents. We therefore
have to calculate the value of a state by taking into account the actions of the
other agents. It is easy to see how the complexity increases by the number of
agents involved and the number of possible actions for each agent.
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4.4 Joint Action Learning (JAL)

In this algorithm we estimate other agents’ policies to determine the expected
probability with which each different joint actions is played. This probability
distribution of joint actions can then be used to calculate the value of a state.
In the Joint Action Learner (JAL) algorithm [4], an agent counts the number of
times a joint action pair is played by the other agents in a given state, denoted
by c(s, a−i). A normalized version of the frequencies is used to calculate the
value of a state:

Vi(s) = max
ai∈Ai

Q(s, ai) =
∑

a−i∈A−i

c(s, a−i)∑
a−i′∈A−i

n(s, a−i′)
Q(s, ai, a−i) (7)

where A−i is the possible action set for all other agents and Q(s, ai, a−i) is
the Q-value in state s for the joint action in which agent i plays ai and other
agents play a joint action a−i. All other aspects of the Q-learning update remain
the same as in the standard single-agent Q-learning algorithm. The advantage of
this method is the low additional complexity, which only comes from storing and
updating these counts. However, the algorithm works well only for deterministic
tasks, where all agents converge in the end in choosing the same action in a given
state s.

4.5 Minimax-Q

The minimax-Q algorithm [9] was developed for two-player zero-sum games and
gives a preference in conservative strategies by employing the minimax principle
(“behave so as to maximize your reward in the worst case”). By using the min-
imax principle, we assume that an agent’s opponent will play the action which
minimizes the agents payoff and as a result we try to maximize the optimal
agent’s minimum expected reward.

In the case of two-player zero-sum games, for the strategy π∗ to be optimal
it needs to satisfy

π∗ = argmax
π∈p(A)

min
o∈O

∑
a∈A

Ro,aπa (8)

where Ro,a reward for agent taking action a and opponent taking action o.
Both Value Iteration and Q-learning, as well as other algorithms can be

easily extended by replacing the max operator of single agent Q-learning with
the minimax value.

For example, Value Iteration becomes:

Qi(s, a, o) = Ri(s, a, o) + γ
∑
s′∈S

T (s, a, o, s′)Vi(s
′) (9)

Vi(s) = max
π∈p(A)

min
o∈O

∑
a∈A

Qi(s, a, o)πa (10)
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π∗i = argmax
π∈p(A)

min
o∈O

∑
a∈A

Qi(s, a, o)πa (11)

Moreover, Q-learning extends to minimax-Q

Qi(s, a, o)← (1− η)Qi(s, a, o) + η(r + γVi(s
′)) (12)

Vi(s) = min
o′∈O

∑
a′∈A

π∗i (s, a′)Qi(s, a, o
′) (13)

π∗i (s, a)← argmax
πi

min
o′∈O

∑
a′∈A

πi(s, a
′)Qi(s, a

′, o′) (14)

The optimization problem in (14) can be solved using linear programming.
Even if the minimax optimization has multiple solutions, any of them will achieve
at least the minimax return regardless of what the opponent is doing. Moreover,
it is shown that when the opponent is suboptimal (does not always chooses the
optimal action) we might get better results.

Convergence is guaranteed only for two-player zero-sum games and assum-
ing that the other agent executes all of its actions infinitely often. However, it
provides an opponent-independent method for learning an equilibrium solution,
since convergence also holds even when the other agent does not converge to
the equilibrium. On the other hand, minimax is very conservative, as it tries to
maximize the worst-case performance. In some cases it might be more beneficial
to adjust the risk taken to maximize the reward w.r.t. the opponent’s behavior.

4.6 Nash-Q

Hu et al. [6, 7] extended the Minimax-Q algorithm to general-sum games. Here
each agent maintains Q values for all the other agents. A Nash-Q agent assumes
that all agents will play according to a Nash equilibrium in each state:

Qi(s, a1, . . . , an)← (1− η)Qi(s, a1, . . . , an) + η(r + γVi(s
′)) (15)

where Vi(s) = Nashi(s,Q1(s, a1, . . . , an), . . . , Qn(s, a1, . . . , an)) (16)

Nashi(s,Q1(s, a1, . . . , an), . . . , Qn(s, a1, . . . , an)) = π1(s) . . . πn(s)Qi(s
′, a1, . . . , an)

(17)

Nashi(s,Q1(s, a1, . . . , an), . . . , Qn(s, a1, . . . , an)) is the expected payoff for agent
i when the agents play a Nash Equilibrium in state s with Q-values Q1, . . . , Qn

While Minimax-Q uses linear programming to solve the optimization problem
for zeros-sum games, Nash-Q uses quadratic programming to find an equilibrium
in general-sum games. Nash-Q keeps the opponent-independence property of
Minimax-Q, but one major assumption due to this independence is that the
game must have a unique equilibrium, which is not always true for general-sum
stochastic games. When multiple equilibria exist, the agents should agree to play
the same equilibrium, which again is not always possible.
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The algorithm converges to Nash-Q values if either every stage game (one-
period game) encountered by the agents during learning has a global optimum
point, and the agents update according to values at this point, or if every stage
game has a saddle point, and agents update in terms of these[6, 7]. This re-
quirement is satisfied only in special cases, as properties of stage games during
learning are difficult to ensure in general. Therefore extending to external mech-
anisms for equilibrium selection could be useful for convergence.

4.7 Correlated-Q

Greenwald et al. [5] extend Nash-Q to include correlated equilibria instead of
Nash equilibria, so as to solve the case where coordination is needed to agree on
the same equilibrium.

Vi(s) = CEi(s,Q1(s, a1, . . . , an), . . . , Qn(s, a1, . . . , an)) (18)

where CEi(s,Q1(s, a1, . . . , an), . . . , Qn(s, a1, . . . , an)) is the agent i’s reward ac-
cording to some correlated equilibrium in the general-sum game determined by
the Q-values Q1, . . . , Qn

The authors additionally introduce four variants of correlated-Q learning,
based on four correlated equilibrium selection mechanisms to address the diffi-
culty in the equilibrium selection problem.

4.8 Friend-or-Foe Q-learning

In this setting other agents are classified into two groups: friends (coordination)
with updates similar to Q-learning or foes (opponents) with updates similar to
minimax-Q [8].

Although defined for any number of players, the authors show the updates
for the two-player game:

Friend: V1(s)← max
a1∈A1,a2∈A2

Q1(s, (a1, a2)) (19)

Foe: V1(s)← max
π1∈Π(A1)

min
a2∈A2

∑
a1∈A1

π1(a1)Q1(s, (a1, a2)) (20)

Littman [8] proves that Friend-or-Foe Q-learning converges in general-sum
Markov games, however equilibrium policies are restricted in these two classes
of games.

5 Drawbacks of MARL and Future Work

One disadvantage or RL is the exponential growth of the state-action space in
the number of state and action variables (curse of dimensionality [13]). MARL
faces additional complexity, exponential in the number of agents. Learning in
the joint state-action space makes the above approaches feasible only for small
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environments and with a limited number of agents. One way to address this is
to consider modeling other agents only when a better payoff can be obtained by
doing so, and ignore other agents otherwise. This reduces the state-action space
while providing a way to deal with agents when it is beneficial. An example of
such systems is an Robocup, a soccer game player by robots or autonomous cars,
where agents can consider each other when they are in close proximity. However,
usually most MARL algorithms are evaluated on small problems and it seems
unlikely that we could scale up in larger or continuous state and action spaces.

Non-stationarity is also an issue, since the best policy changes as other agents’
policies change. Therefore, convergence in the general Markov game case remains
an unsolved theoretical problem.

Moreover, limited research has been done in the case of incomplete or un-
certain observations as well as in extending to unknown state space. Partial
observable states or games with incomplete information [11] include modeling
belief over the state variable, which can become extremely complicated since the
state-space becomes unbounded and we have to deal with nested beliefs (beliefs
that players hold about each others beliefs). A first approach applied to finite-
horizon very small POSGs combines policy iteration and iterative elimination
of dominated strategies (policies) [2]. Furthermore, an approximate probabilis-
tic inference approach using the EM algorithm [12] empirically showed conver-
gence on a variety of two-player games but there is no known tractable solution
for computing optimal policies in general Partially Observed Stochastic Games
(POSGs).

Finally some researchers argue that Q-values may not be sufficient to learn
an equilibrium policy in arbitrary general sum games [17]. Recently, methods
from evolutionary game theory (which seems related to the concepts of Genetic
Algorithms1 and Neuroevolution2) have been successfully employed to multi-
agent learning [14], however this remains as a future exploration task that is not
the main purpose of this review.

Given this recent change in direction and the algorithms described in this
survey, we believe that advances in multi-agent research can be achieved by a
more thorough combination of machine learning and game theory techniques.

1 https://en.wikipedia.org/wiki/Genetic_algorithm
2 https://en.wikipedia.org/wiki/Neuroevolution
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