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ABSTRACT

Domain-specific relation extraction requires training data for super-
vised learning models, and thus, significant labeling effort. Distant
supervision is often leveraged for creating large annotated corpora
however these methods require handling the inherent noise. On the
other hand, active learning approaches can reduce the annotation
cost by selecting the most beneficial examples to label in order
to learn a good model. The choice of examples can be performed
sequentially, i.e. select one example in each iteration, or in batches,
i.e. select a set of examples in each iteration. The optimization of
the batch size is a practical problem faced in every real-world appli-
cation of active learning, however it is often treated as a parameter
decided in advance. In this work, we study the trade-off between
model performance, the number of requested labels in a batch and
the time spent in each round for real-time, domain specific relation
extraction. Our results show that the use of an appropriate batch
size produces competitive performance, even compared to a fully
sequential strategy, while reducing the training time dramatically.
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1 INTRODUCTION

Many important natural language processing tasks, such as knowl-
edge graph completion and question answering require semantic
relation classification, where the goal is to categorize relations be-
tween entities in unstructured text. Supervised methods for this task
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are either based on hand-engineered features or learned representa-
tions by deep neural networks. However both methods rely heavily
on large quantities of high-quality annotated data. The requirement
of large labeled corpora limits the application of neural models to
many Information Extraction tasks, as it is often quite expensive
and challenging to acquire large amounts of reliable gold standard
validation data for training. To address this issue approaches such
as active learning and distant supervision were proposed.

Distant supervision aims to classify sentences at a bag level,
where a bag contains noisy sentences mentioning the same entity
pair but possibly not describing the same relation. To reduce the
noise multi-instance learning is used, however these methods can-
not handle sentence-level prediction or bags where all sentences
do not describe a relation. Moreover the coverage of annotations is
largely dependent on the type of entities/relations: while popular
relations will have good coverage, tail ones may not be well repre-
sented. Thus, incorporating human annotation is crucial, especially
for domains where we have many tail relations or many sentences
where the entities are mentioned but the relation does not hold
(e.g..finding adverse drug events in medical forums).

Active learning tries to find the most efficient way to query
the unlabeled data and learn a classifier with the minimal amount
of human supervision. In classical active learning setting a sin-
gle instance at each iteration is chosen. However, the sequential
active learning methods have many drawbacks when combined
with expensive complex models, such as neural networks: training
deep networks usually takes a long time, and therefore updating
the model after each label is costly in terms of both the human
annotation time waiting for the next datum to tag as well as compu-
tational resources. Moreover, due to the local optimization methods
used for training neural networks it is highly unlikely for a single
point to result in significant impact on the performance. Therefore
in practical applications it is often useful to perform batch active
learning, as the cost of acquiring a batch of labels for training might
be significantly less than the cost of acquiring the same number of
sequential individual label requests. This holds true when the time
to update the model and select the next example is prohibitively
large. But under labeling budget constraints there is an inherent
trade-off between efficiency and performance, as large batches will
result in less frequent model updates and increased prediction error.

Decisions regarding the parameters such as the batch size or
the total budget constraints are usually taken as arguments in
batch model active learning related work. However, these decisions
are likely to be suboptimal as they do not rely on information
acquired from the data distribution or the learned model. Thus,
optimizing these parameters automatically is an important problem
for many tasks. Ideally, we would want a methodology that can
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inform us about the batch size rather fast irrespective of the number
of unlabeled examples, i.e. low complexity.

In this paper we focus on applying neural models for extracting
an arbitrary user-defined relation from a potentially infinite pool
of unlabeled Web and social stream data. Despite the advantages
of batch active learning, previous work in relation extraction has
not explored the trade-offs between performance and batch size,
or annotation costs versus training delay [5]. To better understand
the nature of annotation costs for relation extraction we present an
empirical study of batch active learning in ten real-world relation
extraction tasks involving human annotators. More specifically we
try to optimize the batch size so as to keep the model performance
at a satisfactory level but reduce the total training time.

The contribution of this work is a systematic analysis for op-
timizing the batch size in an end-to-end neural net framework
for relation extraction method with Human-in-the-Loop on any
domain and concept that the user is interested in extracting. We
examine several popular strategies to select the next examples to
present to the human annotator: uncertainty sampling [26], QUIRE
[22] and a recently proposed method that computes uncertainty
estimates by sampling from the same neural model [15]. We test
our hypothesis on publicly available standard datasets for relation
extraction and on a challenging task of extracting causal relations
among drugs and adverse drug events from user generated text.
Our experimental results show that increasing the batch size in
active learning up to around five examples produces comparable
results with a sequential active learning approach. Furthermore,
we propose to always keep the human annotator busy, even during
model updates by training and performing next batch selection
on slightly out-of-date information. We show that this approach
reduces the total training time by ~ 50% without hurting the overall
performance.

The rest of the paper is organized as follows. We give an overview
of related work in Section 2; we formally define the relation extrac-
tion problem and describe our experiments in Section 3; and we
present our analysis on both on publicly available standard datasets,
as well as in the medical domain for the extraction of adverse drug
events (Section 4). Finally, in Section 5 we describe future directions
of our work.

2 RELATED WORK

2.1 Relation Extraction

Early works in relation extraction include classical machine learn-
ing approaches with SVMs and kernel-based methods as the ones
most commonly used [18, 39, 60], including specialized kernels de-
signed for relation extraction [8, 34] and Tree Kernels [12, 24, 58, 60].
Their main drawback is that they rely on human-engineered fea-
tures and linguistic knowledge in the form of various Natural Lan-
guage Processing operations (POS tagging, morphology, depen-
dency parsing) [7, 39, 49], which can make them difficult to extend
to new entity-relation types, different prose styles, new domains
and other languages.

Considerable attention has been given to deep learning models
for relation classification. Convolutional Neural Networks (CNNs)
have been extensively explored: with lexical features and synonym

1132

WWW 2018, April 23-27, 2018, Lyon, France

class embeddings [29]; with the addition of POS tagging and Word-
Net hypernyms and pre-trained word embeddings [59]; including
dependency patterns and dependency trees [9, 31, 33, 57]; exploit-
ing pre-training on large general corpus and then fine-tuning on
the target corpus [27]; relying on word-level attention mechanism
to detect cues and learn which parts of a sentence are relevant to a
given relation type [45]; with the combination of word embeddings
and clustering to improve the generalization of relation extractors
across domains [36]. Some works also investigated replacing the
common soft-max loss function with a ranking-based loss function
[42] and add a novel attention mechanism to capture the relevance
of words with respect to the target entities [53]. Ensemble of CNNs
and Recurrent Neural Networks (RNNs) have also been explored
with a novel mechanism for sentence splitting and a simple voting
scheme [52] as well as hierarchical attention-based RNNs [30].

The main drawback of many related works is that models are
built under the assumption that a (large) pool of manually anno-
tated examples exists already and in many cases this assumption
does not hold: the definition of a relation is highly dependent on
the task at hand and on the view of the user, therefore having
annotated data readily available for any specific case is unlikely.
Several approaches have been proposed to reduce the annotation
cost for relation classification. The most prominent methods ex-
ploit large knowledge bases to automatically label entities in text
[4, 16, 23, 40] and circumvent the annotation problem. Such meth-
ods rely on distant supervision and assume that when two entities
co-occur a certain relation is expressed in the sentence, and then
try to handle the noise [3, 28, 41, 54]. For many ambiguous relations
mere co-occurrence does not guarantee the existence of the relation
and these architectures can fail on the prediction task. For example,
while annotating data on Adverse Drug Events (see Section 4.1) we
found that half of the sentences mentioning a drug and an Adverse
Drug Event do not express causality between them!.

A machine learning system build solely on large corpora is un-
likely to capture the subtle nuances of constantly evolving social
language including new terms, phrases and deviation from normal
usage. Human knowledge is therefore crucial, but human super-
vision can be expensive. Active learning methods limit this cost
by selecting the most useful examples for human annotation. We
briefly discuss how active learning has been leveraged in relation
extraction related work.

2.2 Active Learning for relation extraction

Angeli et al. [3] leverage active learning for providing partial su-
pervision to a distantly supervised relation extractor using a small
number of carefully selected examples. They show that, for the 2013
KBP English Slot Filling task?, 10,000 labeled examples and a large
corpus for distantly labeled data can yield notable improvements
in performance over distantly labeled data alone. Sterckx et al. [48]
perform noise reduction by using semantic clustering and word
embeddings: they perform hierarchical clustering of the candidate
training samples to select the most reliable ones. Fu and Grishman
[14] propose to interleave self-training with co-testing to reduce the

'In many of such cases, the condition for which you are taking the drug is mentioned.
E.g., “T took aspirin for my headache".
2http://surdeanu.info/kbp2013/
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annotation cost. The co-testing (the sampling method) leverages
local and global data views [50]: a global classifier that relies on
similarity of relation phrases and a local classifier that uses a set of
lexical and syntactic features. The effectiveness of instance-ranking
criteria used in active learning, such as uncertainty [26], represen-
tativeness [22] or information gain [15], is highly dependent on the
underlying data and the relation to extract and it is very difficult
to identify strong connections between any of the criteria and the
task [21]. Moreover, the methods leveraged in relation extraction
related work assume a sequential active learning setting, where we
query one example at a time. However single instance selection
strategies are quite expensive when dealing with training neural
models in terms of computational resources and waiting time for
the human annotator, as they require tedious retraining with each
instance labeled.

2.3 Batch Mode Active Learning

Many batch mode active learning methods have extended single
instance selection strategies or propose other heuristics based on
the informativeness or diversity of the selected batch [6, 13, 20, 51].
Proposed frameworks that try to incorporate information overlap
between the instances [17] treat this as an integer programming
problem and utilize second-order Taylor approximation methods.
Wei et al. [56] design submodular functions for specific classifiers
such as Nearest Neighbors and Naive Bayes. Recent work [43] ap-
plies core-set theory to CNNs and compares with empirical risk
minimization [55] and clustering [13]. However, all of the afore-
mentioned methods have two main drawbacks:

(1) second-order methods have high complexity and do not scale
well with larger datasets.

(2) the number of instances per batch is not optimized but rather
pre-selected to a specific constant number.

Both components, i.e. the number of instances to be queried
from a given pool of unlabeled set of examples and the selection
of the specific instances to be labeled are critical for a system that
can generalize to many tasks and minimize human labeling effort.
Most existing work requires the number of instances in each round
as input argument. In real-world applications prior knowledge is
crucial for these choices. But in the case of starting a system from
scratch, there is typically no knowledge of the data stream with
respect to its quality, the complexity of the samples or the confi-
dence of current models that will help in designing a classifier with
good generalization accuracy. Thus we cannot decide in advance
the batch size.

The question then is how to optimize the whole process tak-
ing into account annotation and training time, as well as model
performance. To the best of our knowledge, the only work that
optimizes both the selection of batch size and instances transforms
the problem into a single optimization function that maximizes
diversity, uncertainty and redundancy as well as adding a penalty
term that depends on the batch size [10]. They solve the optimiza-
tion problem with gradient-based methods, however apart from the
quadratic complexity with respect to the number of unlabeled data
samples (and thus not scaling well for large datasets), their method
tries to optimize a function that penalizes larger batch sizes, while
in our case we try to find the largest possible batch size that keeps
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performance at a satisfactory level, subject to our total annotating
budget. Nevertheless, we have experimented with their method
but unfortunately, even without the expensive computation of the
diversity scoring function, the time for one iteration to return a
batch size and the corresponding instances was prohibitive for our
real-world Human-in-the-Loop system.

The aim of this work is to investigate the influence of the batch
size for different active learning strategies on different relation
classification tasks and extract valuable knowledge in finding the
optimal batch for Human-in-the-Loop systems while keeping a
satisfactory level of performance. Additionally we propose an ap-
proach that will eliminate the waiting time for the human annotator
without reducing the system performance. Our training time is re-
duced significantly while training with 200 examples, our accuracy
is on average only 5% less that a model trained on full data, which
achieves 90% accuracy.

3 RELATION CLASSIFICATION

In this work, we treat relation extraction as a binary classification
task, where given user-generated text s containing one or more
target entities e;, our goal is to identify if s expresses a certain
relation r among the entities e;. We treat relation extraction as a
cold-start problem, where no labeled data exist and query a human
annotator for labels. Thus active learning is the most appropriate
framework to tackle this problem.

We consider a pool-based active learning scenario [44] in which
there exists a small set of labeled data L = (x1,y1), ..., (Xn; Yn;)
and a large pool of unlabeled instances U = x1, . . ., xn, . The task
for the learner is to draw examples to be labeled from U, so as
to maximize the performance of the classifier while limiting the
expected number of labels requested and thus the annotation cost.
In our task an instance is a text snippet expressing the relation
between the entities and annotation refers to manually assigning
a “true/false" label to each instance, i.e. y; € {0, 1}, where y; is the
annotation of instance x;.

To acquire a large pool of unlabeled text data from any web
source such as online news articles or social media streams (Twitter,
blogs etc.), one can create dictionaries using any off-the-shelf tool
(e.g. [2, 11]) and select sentences based on the co-occurrence of
the entities of interest. There are several approaches available for
identifying entities in unstructured text [23, 40, 48], thus we treat
this first step as a black-box component. We then segment the
learning process into B training rounds of k instances at a time
and interactively annotate the data as we train the models. In each
round we train a neural model using the instances we have labeled
so far and use the model to select the next k examples to annotate
from U. Thus our training procedure resembles recent advances
in Deep Learning showing that increasing the batch size during
training produces comparable results with methods that decay the
learning rate but often leads to shorter training times [46].

We experiment with several active learning strategies to deter-
mine the next batch of examples, specifically:

e us: Uncertainty sampling [26], which ranks the samples
according to the model’s belief it will mislabel them

e quire: QUIRE measures each instance informativeness and
representativeness by its prediction uncertainty [22]
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Figure 1: CNNs for relation extraction

e bald: a recently proposed combination of Monte Carlo and
Dropout to obtain uncertainty measures and Bayesian Active
Learning by Disagreement as an acquisition function to se-
lect examples that are expected to maximize the information
gained about the model parameters [15].

Our goal is not to specifically improve a particular learning model
per-se, but rather minimize the use of computational resources as
well as the human annotation effort and waiting time by choosing
an optimal batch size k.

We chose Convolutional Neural Networks (CNNs) as our classi-
fication models, as they are highly expressive leading to very low
training error and faster in training than recurrent architectures.
More importantly CNNs are known to perform well in the relation
classification task [37, 59]. To keep our classifier lightweight and
robust our input representations rely solely on distributional seman-
tics and not on lexical features or any other language-dependent
prior knowledge, as shown in Fig. 1:

e CNNpos: Positional features [59] along with word sequences,
i.e. we generate three embedding matrices, one initialized
with pre-trained word embeddings and two randomly ini-
tialized for the positional features

e CNNcontext: context-wise splits of sentences [1], i.e. using
pre-trained word embeddings and the two entities in the text
as split points to generate three matrices - left, middle and
right context.

Our models are using 100-dimensional pre-trained Glove word
embeddings [38], 100-dimensional positional embeddings, and con-
tain 300 convolutional filters, kernels of width 3, and ReLU non-
linearities [35]. Training is performed with cross-entropy as cost
function that is optimized with Adam [25] with 0.001 initial learning
rate. Dropout is set to 0.25.

4 EXPERIMENTS

As noted, the relation extraction task is a challenging one. Especially
in the case of developing early prototype systems little can be done
with a traditional neural network in the absence of a significant
quantity of hand labeled data. While a task specific labeling system
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Figure 2: A look at the impact of batch size on training rate for one active learning strategy,
one neural structure on one task. Note that the best strategy in this case is two at a time.

can help [47], it makes sense to consider the “best order” to ask the
user for input in the hopes of achieving a sufficiently performant
system with minimal human effort.

Our goal in this work is to limit the human and computational
resources without significantly impacting the performance of the
models by optimizing the active learning batch size for an arbitrary
relation extraction task. We simulate the Human-in-the-Loop by
using existing benchmark datasets on relation extraction. More
specifically, we treat all examples as unlabeled and “request" the
annotations in small batches from the existing labels, as if they
were annotated in real-time by a user. This setting allows us to run
in parallel multiple experiments varying the batch size for all active
learning strategies and all tasks. We also continue our analysis on
our real case scenario of extracting Adverse Drug Reaction (details
on the data in Section 4.1).

Our experiments showcase a methodology that can be used to de-
cide on the optimal batch size based on the average performance on
datasets that solve the same task for disjoint domains, for example
relation extraction where the relation is different across datasets.
We present a set of directly useful recommendations that can guide
the development of domain-specific relation extraction systems.

4.1 Datasets

For our analysis to produce robust results that generalize across
relation classification tasks and models we utilize two different
datasets containing 10 relations in total:

(1) We perform our analysis on a real case experiment by ex-
tracting Adverse Drug Events (ADE) relations from a Web
forum?. Our Human-in-the-Loop is a medical doctor using
our system to annotate the data. In this dataset posts are
tagged based on mentions of certain drugs, adverse drug

Shttp://www.askapatient.com/
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Figure 3: An exploration of the impact of initial batch size. For our datasets an an initial
batch of 30 seems like a good place to start. It gives enough examples to begin to span the
space. This plot is the average of 10 datasets with CNNcontext as our classification model.

reactions, symptoms, findings etc. However, the mere co-
occurrence of a drug and an ADE in a sentence does not
necessarily imply a causal event/drug relation among the
two. We name this dataset causalADEs [32].

(2) We also leverage existing corpora: the Semeval 2010 - Task
8 dataset [19], which consists of 8,000 training and 2,717
test examples covering nine relation types: Cause-Effect,
Component-Whole, Content-Container, Entity-Destination,
Message-Topic, Entity-Origin, Instrument-Agency, Member-
Collection, Product-Producer. Additionally, some sentences
are labeled as “Other", indicating that none of those relations
are expressed.

We run a series of experiments to quantify best practices with
respect to batch size and HumL systems. Ultimately, we will exam-
ine 10 tasks and apply 3 active learning strategies to them. Initially
though, we will begin looking at a single plot, that of using un-
certainty sampling to train a CNNcontext model on the SemEval
Component task (see Figure 2). In this experiment, we train the
model with batches of various sizes without any pre-training. This
allows us to observe how the model is affected by varying the batch
size in cold-start scenarios when no annotated data are available
and we wish to start the human annotation process as quickly as
possible.

There are a few things to notice here. The first is that training
with 100 or 200 examples per batch is substantially less efficacious
than the smaller batches. Additionally note that by the time you’ve
scored 200 examples, batches of 5 or 10 do nearly as well as anything
else. Lastly note that until there are around 20 examples scored the
system does not really take off. The intuition here is that you need
enough examples to “span the space” or you end up over fitting
what little data you have. It’s this last point we will examine first.

4.2 Initial Batch

As we noticed above, despite having the best performance in the
end, active learning with just one or two examples in not appro-
priate when initializing the model due to high variance in small
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corpora, thus the model tends to “overfit” these first few concepts.
An alternative is to order the data based on unsupervised text based
criteria and select the highest ranked ones as initial training ex-
amples. Our experiments with several criteria, including random,
showed that maximizing linguistic dissimilarity between sentences
(by utilizing Glove embeddings) works well [32].

The first question is how large this initial batch should be for

good results. We explore this by fixing the learning batch size at 5
and vary the size of the initial batch (B®) generated via linguistic
dissimilarity to prime the run. We continue the process until we
hit a fixed training size of 200 (our budget constraint) and plot the
accuracy at 200. As you can see in Figure 3 4, starting with a batch
of about 20-40 examples results in better results. The intuition here
is that less than 20 and the system overfits the initial training data,
more than 40 and the active learning is unable to take over and
focus on the regions of confusion.
Recommendation: Use an initial batch (B®) derived through lin-
guistic dissimilarity of about 30 labeled examples to train the system
before engaging active learning for more efficient human annota-
tion.

4.3 Subsequent Batch Size

After obtaining an initial linguistically diverse batch of 30 examples
as a good starting point, we need to decide on a proper subsequent
batch size. Since computing the next “batch” and loading it into the
UI for the subject matter expert to score takes some time, there is a
preference for larger batches. However, as Figure 4 shows, there is
a negative impact of these larger batch sizes (here we compare the
accuracy across different batch sizes, after 100 training examples).
The best performance is when using batch size of 1, but the real
drop seems to be after 5 (which only loses 5% compared to the batch
size of 1). Thus, if your system has a finite cost associated with
generating batches this may be good place to stop.
Recommendation: A default batch size of 5 examples seems to
be a good compromise between efficiency of example generation
and speed of learning in the active system.

4.4 Interleaving

While the prior section points out the advantage of smaller batches,
these advantages do not come for free. Generating a batch of exam-
ples and loading it into the scoring framework for the user to look
at takes time. We have observed that generating a training example
for a single sentence (e.g., is there a causal relation between A and
B) with a good UI and well defined task takes between three and
ten seconds on average. Five seconds is a fairly good median. If it
takes 25 seconds to compute a batch and load it into the UL, then
the work flow for a single item batch will be:

(1) User spends 5 seconds scoring a single example.

(2) System spends 25 seconds getting the next example ready.

(3) Repeat.

Or, in other words, over 80% of the time the user is sitting around
waiting. Even with the recommended batch size of 5 the user will

“Due to being computationally expensive to perform such an experiment with QUIRE,
we do not include it in this experiment. However, we performed an experiment in
which we train QUIRE with {5, 10, 20, 40, 50} examples per batch and the trend looks
similar to our results for uncertainty and bald, with a performance lower than bald.
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Figure 4: A view of performance of the CNNcontext model trained under different active
learning methods. This is a look at the performance after 100 examples have been scored.
As can be seen, compared to the fully sequential approach of one example at a time, there
is approximately only 5% decrease in the performance of using a slightly larger batch size
of 5 examples.

be spending half their time waiting. The single largest cost in a
Human-in-the-Loop system is the human annotation time. In an
ideal world they would be scoring constantly.

Interleaving provides us a potential for achieving this. Without
interleaving the system trains batch B" using all the information
from batches BC... B"~!. With interleaving it uses only BC... B" 2.
This means that the user can be scoring a batch B"~! while the
computation and loading of the next batch B" is occurring.

Obviously, with less training data the accuracy is likely to suf-
fer; the question is by how much. We perform this experiment by
comparing the two approaches, i.e. with or without interleaving,
using a B of 30 and a batch size of 5 (see Figure 5). As can be seen,
these two are quite close in terms of accuracy. If we additionally
plot the total time required for all iterations (Figure 6) the result is
even more striking; we see that interleaving produces comparable
performance in ~ 50% less training time, irrespective of the active
learning method chosen. Moreover, we showcase the inefficiency
of training for one round with 200 examples (horizontal lines).
Recommendation: Use interleaving with a batch size that is as
small as possible while still allowing continuous human work.

4.5 Active Learning comparison

To conclude, we also present a comparison of active learning meth-
ods. As expected, Uncertainty is much faster than the rest of the
active learning strategies, and QUIRE is slower than all (Fig. 6).
Since bald requires sampling from the model during testing time,
it requires slightly more time than uncertainty to compute the fi-
nal ranking of the samples, but also suffers from noise due to the
monte carlo estimation of the ranking score. Uncertainty seems to
be the winner in all dimensions, as it produces the best results faster
(shown in Figures 3-5). Despite the fact that using only uncertainty
does not incorporate other information, such as representativeness
or diversity, the method is extremely robust and appropriate for
Human-in-the-Loop applications that require efficient switching
between model updates and human querying.
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Recommendation: Start with active learning methods that are
based on fast, less complex metrics. Compare with additional meth-
ods when sufficient data are gathered.

4.6 Overall impact

In figure 5 we can also see the overall impact of leveraging active
learning methods. The dotted line represents scoring 200 exam-
ples selected with linguistic dissimilarity; it indicates 61% accuracy,
with random being slightly lower. For a fixed amount of work (200
examples) we see our prescription results in a 40% increase in per-
formance (to an accuracy of 86%). For a fixed performance point we
see an even more impressive result, as 25 scored examples achieve
the same performance as the 200, an 72.5% reduction in human
time.

Finally, we also plot the average accuracy of training with all
data available as labeled. We see that the difference in terms of
accuracy with our best performing model is only 4%. On average
each relation task has a pool with more than 1,000 examples. Thus
our system is trained on only 20% of the data, a result that proves
the importance of incorporating human knowledge on relation
extraction systems.

5 CONCLUSIONS AND FUTURE WORK

Relation extraction for any arbitrary domain of user interest is a
challenging task. To leverage state-of-the-art neural network ap-
proaches in settings where large pre-annotated corpora are not
available human annotation is necessary. In this work, we aim to
reduce to the computational and annotation costs incurred from
training a relation classifier under streamed annotations, while sus-
taining a reasonable level of performance. We provide an analysis of
active learning methods that can be adapted to the setting in which
labels are requested in equal-sized batches of k examples. We show
that as k increases, the model performance is lower than that of the
analogous results for fully-sequential active learning. Our experi-
mental results show that we can achieve competitive performance
for extracting relations with very little annotated data. Finally, we
propose a method that trains on slightly outdated information but
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Figure 6: Comparison of interleaving and classic training sessions in terms of total training and labeling time.

keeps the human annotator busy, and show that this results in a
~ 50% decrease in total time without significantly impacting the
accuracy of the resulting model. Our Human-in-the-Loop system
can easily learn new arbitrary relations efficiently, fully leveraging
the human annotator throughout the process.

Our work is directly applicable to Human-in-the-Loop relation
extraction. However we have experimented only with RE systems,
and therefore our work is still tentative for general applications.
Although intuitively we believe that the recommendations should
generalize well across many tasks, our results could be potentially
sensitive to the data distribution. We leave the analysis of this
sensitivity to future work.

Active learning might be widely explored but several compo-
nents remain as open problems. We conclude with a description of
potential future directions that we hope to explore:

o Adaptive batch size active learning methods, where the batch
is changed dynamically between iterations, depending on
additional features of specific instances.

Our work assumes perfect ground truth labels. However,
in reality we often deal with non-perfect labelers and this
introduces challenges in real-world applications of active
learning. It would be useful to explore how the optimal batch
size varies with respect to the labeling noise.

Blending semi-supervised with batch active learning, as this
will help us explore distributional semantics for pre-training
our models and potentially decrease the number of labels
needed to reach a good performance.

Framing the relation extraction problem as a resource-bounded
multi-objective optimization problem and try to reduce the
complexity of batch mode active learning methods.
Meta-learning approaches, i.e. learning the best active learn-
ing strategy instead of relying on heuristics such as uncer-
tainty, diversity etc. Current meta-learning approaches are
limited to stream-based active learning or static one-step
selection of a batch for labeling. Extending to pool-based
adaptive scenarios can potentially leverage the represen-
tational similarity of unlabeled data points and lower the
total number of examples that the system asks humans to
annotate.
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