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ABSTRACT
Data scarcity and quality pose significant challenges to supervised
learning. The process of generating informative annotations can be
time-consuming and often requires high domain expertise. Active
and semi-supervised learning methods can reduce labeling effort by
either automatically expanding the training set or by selecting the
most informative examples to request domain expert annotation.
As most selection methods are heuristic, the performance varies
widely across datasets and tasks. Bootstrapping approaches such
as self-training can result in negative effects due to the addition
of incorrectly pseudo-labeled instances. In this work, we take a
holistic approach to label acquisition and consider the expansion of
clean and pseudo-labeled subsets jointly. To address the challenge of
producing high-quality pseudo-labels, we introduce a collaborative
teacher-student framework, where the teacher, termed AdaReNet,
learns a data-driven curriculum. Experimental results on several
natural language processing (NLP) tasks demonstrate that the pro-
posed framework outperforms baselines.
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1 INTRODUCTION
Deep Learning has been successfully applied in a variety of natural
language processing (NLP) tasks, from dependency parsing [58]
and named entity recognition [31] to semantic role labeling [19],
etc. A crucial component is the availability of annotated data. Ob-
taining labeled examples that can capture the task characteristics
is one of the most important prerequisites for supervised learning.
Acquiring labels for a large pool of instances in highly technical
domains can quickly become prohibitive due to cost, time and ex-
pertise requirements. On the other hand, it is often easier to collect
inexpensive lower quality weak labels through distant supervision,
crowd-sourcing, etc., but research has shown that deep neural net-
works trained on noisy labeled data tend to overfit [53, 61].

Active and semi-supervised learning methods reduce the depen-
dency on large quantities of labeled data. Active learning minimizes
annotation by identifying informative subsets of instances with
high training utility. Various acquisition strategies have been pro-
posed, but the literature shows that there is no “one-fits-all” solution,
and which strategy is the best depends on the downstream task
[38, 39]. Semi-supervised methods address the lack of annotations
by leveraging unlabeled examples, either by explicitly creating ad-
ditional training data or by incorporating regularization terms com-
puted on unlabeled instances. These methods can be easily applied
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to a variety of tasks, e.g., medical image classification and segmen-
tation [1, 24, 26], land cover classification [46], community-based
question answering[59], production lines [11, 12], transportation
planning and traffic management [10], and language understanding
and generation [5]. Here, wemostly focus on information extraction
tasks. Information extraction (IE) can directly enhance pervasive
technologies with significant societal impact, e.g., in low-resource
settings, IE can be particularly useful for enhancing conversational
agents in smart environments [52].

Self-training is one of the earliest methods that enlarge the train-
ing set with pseudo-labels. Self-training accepts the classifier’s
predictions as correct labels when the model is very confident in
its predictions [40]. The major drawback of relying on model confi-
dence is the high percentage of incorrectly labeled instances that
might be added to the training data. Especially for a model trained
on small sets of annotated data, model confidence might not be
indicative of correctness [17].

Recent works utilize unlabeled instances as an additional reg-
ularizer that incorporates information about the data “manifold”
to produce better decision boundary estimates, typically enforcing
consistency between the model predictions for the same instance
under different noise variations, surpassing supervised learning
methods in computer vision classification tasks [44]. Consistency-
based methods have been designed for model robustness, after a
small static annotated dataset has been acquired, in addition to the
large-scale unlabeled data at hand. Similarly, several works demon-
strate improved training with large sets of noisy labels [33, 60],
with the best-performing methods relying on small trusted fixed
datasets for noise-robust training [20, 23, 47]. However, the ques-
tion of whether we can achieve the same performance gains in a
realistic human-in-the-loop scenario with iterative label acquisition
remains fairly unanswered.

When considering data acquisition strategies, it is most valuable,
for example, to request annotations on instances in which the model
has high classification uncertainty, while relying on pseudo-labels
for trivial instances. Due to the practical benefits, there has been
significant ongoing research in designing active learning heuristics,
robust semi-supervised methods, and combining both [15, 45, 51].
In contrast with prior work, we leverage noise-robust training
methods in conjunction with semi-supervised learning when the
domain expert gradually builds the training dataset, simulating a
realistic scenario of label acquisition.

To this end, we propose an effective method that addresses the
problem of noisy pseudo-labels generated by themodel, with an aux-
iliary teacher that provides a data-driven curriculum. The teacher
model is trained on the domain expert annotated subset and the
student predictions, effectively learning to distinguish between
correct and noisy labels. On the other hand, the student generates
pseudo-labels based on a curriculum determined by the teacher.
Both networks are jointly optimized with stochastic gradient de-
scent on streams of domain expert annotations and pseudo-labeled
instances, both expanding the training data in each iteration.

The proposed framework enables an efficient parallelizable com-
bination of active and semi-supervised learning that achieves high
accuracy, filters out noisy pseudo-labels, and is agnostic to the un-
derlying strategies used for collecting pseudo-labels and domain

expert annotations. The contributions of our work are summarized
as follows:

• We design a collaborative student-teacher framework that
filters out pseudo-labeled instances with a data-driven cur-
riculum strategy. Unlike previous work in semi-supervised
research, where the trusted labeled set is static and prede-
fined, we jointly expand the labeled data along the training
process.
• We propose an auxiliary teacher, termedAdaptiveReweight
Network (AdaReNet), that can be combined with any exist-
ingmodel and can be trained jointly under the same computa-
tional pipeline, without additional changes to the underlying
model.

We validate the robustness of the proposed AdaReNet under a
variety of settings, varying the active learning strategies and bench-
mark tasks. Experimental results show that the proposed method is
effective for filtering noisy-labeled instances, outperforms pseudo-
labeling baselines, and produces comparable results with semi-
supervised regularization techniques.

2 RELATEDWORK
Active Learning aims at incorporating targeted human annota-
tions: the learning strategy queries an oracle for annotations of
specific data points in an iterative manner, where selection criteria,
otherwise termed acquisition functions, identify the best data to
annotate next. We refer the reader to a review of the most com-
monly used acquisition functions [49]. The effectiveness of these
criteria is highly dependent on the underlying data; it is often very
difficult to identify strong connections between any of the criteria
and the task at hand [22, 37].

Semi-supervised Learning encompasses algorithms that uti-
lize small amounts of labeled data together with large sets of un-
labeled data [6]. A category of these algorithms can be described
as generating pseudo-labels by leveraging the model’s prediction,
but they often produce labels that can be noisy and have been
found damaging for several NLP tasks [7, 9]. Recent methods im-
pose some form of noise by relying on model stochasticity [30, 54],
data augmentations or perturbations [3, 41, 57], and are commonly
evaluated with predefined fixed small training sets.

The combination of active and semi-supervised learning (Semi-
supervised Active learning) can be used to avoid annotating
instances whose labels can be reliably assigned by the learned clas-
sification model [43]. Approaches that augment the training data
with pseudo-labels often fail when applied to sequence labeling
tasks [45], where large amounts of high-quality training data are
required to achieve acceptable performance. Including too many
tagging errors prevents learning a high-performant model. A solu-
tion is for humans to review and correct machine-labeled examples
[45], but this can be as costly and time-consuming as acquiring
annotations from scratch. Other works request annotations only
for the most informative subsequences and automatically label the
rest of the sequence [56]. Humans, however, rely on semantics and
context to process linguistic information, thus it is often desirable
to present the full sequence rather than smaller parts, to prevent
annotation ambiguity.
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Figure 1: Overall description of the framework. Both the or-
acle 𝑂 and the model ℎ𝜃 produce (pseudo-)labels that are
used for training. In addition, oracle annotations are used
for training the AdaReNet teacher 𝑐𝜙 , that produces a data-
driven filtering strategy for the pseudo-labeled data.

Inspired by Curriculum and Self-paced Learning [2, 29], re-
cent work learns to re-weight examples [18, 23, 27, 36, 47]. Most
methods, however, overlook the annotation process. In realistic
scenarios, label acquisition and learning are two interconnected
parts of a continuous iterative process. To this end, we analyze
the effect of pseudo-labeling when combined with ground-truth
collection strategies, and propose a calibrating teac her model to
filter out pseudo-labels that are likely to be incorrect.

3 PROBLEM DEFINITION
We are given access to a small set of 𝑁 labeled instances 𝐷𝐿 =

{(x𝑖 , y𝑖 )}𝑁𝑖=1 that consists of pairs of input sequences x ∈ X, e.g.,
feature representations of sentences and output labels y ∈ Y, where
Y is the set of class labels, e.g., one label per instance in classification
tasks or a sequence of 𝑇 labels y = [𝑦1, 𝑦2, . . . , 𝑦𝑇 ] in sequence
labeling tasks. We denote the total number of unique classes as 𝐶 .
Furthermore, we are given a large pool of unlabeled data 𝐷𝑈 =

{x𝑖 }𝑀𝑖=1 where𝑀 is the number of unlabeled instances and𝑀 ≫ 𝑁 ,
an oracle 𝑂 (domain expert annotator) that we can query for labels
and a separate validation dataset𝐷𝑉 . The goal is to learn a modelℎ𝜃
via utilizing the unlabeled data 𝐷𝑈 as much as possible, to produce
a more accurate model fromwhat would have been by learning only
with oracle annotations. In a sense, the unlabeled set provides useful
information about the data “manifold”, and improves ℎ𝜃 ’s decision
boundary estimation. In this work, we utilize unlabeled data in
the form of pseudo-labels alongside the expansion of the oracle-
annotated data, to minimize the labeling effort in every iteration.

Consider a classification task, where the model ℎ𝜃 is initially
trained with a loss L𝑠 (𝐷𝐿, 𝜃 ) = min𝜃 1

𝑁

∑𝑁
𝑖=1 L𝑠 (y𝑖 , ℎ𝜃 (x𝑖 )), typi-

cally cross-entropy for classification tasks, with 𝜃 the weights of
the neural network. A typical pool-based active learning setting
consists of iterations between querying the oracle 𝑂 for labels on a
batch of 𝑘 instances from the unlabeled data {x𝑖 }𝑘𝑖=1 and retraining
the model. With respect to which unlabeled instances to pass for
annotation, several active learning acquisition functions have been
proposed in the literature [49]. For example, uncertainty sampling
selects instances for which the model is the least confident.

We additionally want to minimize the oracle’s labeling effort
by automatically producing pseudo-labels. As such, in each itera-
tion, the model selects a batch of the𝑚-most confident unlabeled
examples to assign an inferred pseudo-label, based on the model
prediction, with the intention to include these additional data points
to the training set and retrain the model [40]. We denote the pseudo-
label of an example x𝑖 as ŷ𝑖 = argmax𝑗 [ℎ𝜃 (x𝑖 )] 𝑗 , where [·] 𝑗 cor-
responds to the class index.

To mitigate potential labeling noise that could diverge train-
ing, the distribution of pseudo-labels needs to be consistent with
the oracle-generated labels. However, as previously noted, the pro-
cess of acquiring domain expert labels, in reality, is iterative and
baked into the learning process. Here, we incorporate a teacher
network 𝑐𝜙 to approximate a curriculum, i.e., re-weight the training
instances. The teacher takes as input the feature representation of
each instance and the student (i.e., classifier) predictions and out-
puts the learned curriculum, i.e.,𝑤𝑖 = 𝑐𝜙 (x𝑖 , ℎ𝜃 (x𝑖 )). This enables
the integration of additional information, for example, student con-
fidence or layer weights; we leave this to future work. The teacher
model, termed AdaReNet, is a simple extension that filters out any
noisy pseudo-labeled data. Figure 1 illustrates the workflow of the
proposed framework. At each training iteration, we optimize the
following loss:

min
𝜃 ∈R𝑑 ,𝜙 ∈{0,1}𝑀×𝐶

1
|𝐷𝑠 |

∑
𝑖∈𝐷𝑠

L𝑠 (y𝑖 , ℎ𝜃 (x𝑖 )) +

1
|𝐷𝑈 ′ |

∑
𝑖∈𝐷𝑈 ′

(
𝑐𝜙 (x𝑖 , ℎ𝜃 (x𝑖 ))L𝑠 (ŷ𝑖 , ℎ𝜃 (x𝑖 )) − 𝜆𝑐𝜙 (x𝑖 , ℎ𝜃 (x𝑖 ))

)
,

(1)

where L𝑠 denote the student (classification) loss function, 𝐷𝑈 ′ is
the set of pseudo-labeled instances and 𝐷𝑠 includes the labeled
data from previous iterations, as well as the oracle-labeled data
of this iteration. Replacing the teacher 𝑐𝜙 with predefined regu-
larization, e.g., ℓ1-norm, results in the self-paced learning method
𝑐𝜙 = 1{L𝑠 (ŷ𝑖 , ℎ𝜃 (x𝑖 )) < 𝜆}, where 1 is the indicator function
[29]. However, self-paced learning will rely heavily on the proper
selection of 𝜆. If 𝜆 is too small, then only a few pseudo-labeled
instances will be considered. If 𝜆 is too large, a large amount of
pseudo-labeled data will be added to the training. Recent work
that evaluates neural network-based curriculum mechanisms on
supervised computer vision tasks has shown that data-driven cur-
ricula can choose this hyper-parameter effectively, balancing the
trade-off between “easy” and “hard” examples [23]. Other works
propose similar mechanisms for mitigating class imbalance [36].
Here, we design AdaReNet to reduce domain expert labeling effort,
particularly for sequence labeling tasks. The training framework is
summarized in Algorithm 1.

3.1 AdaReNet Teacher
AdaReNet is trained on the ‘clean’ subset of the training data, i.e., the
instances annotated by oracle 𝑂 , essentially “imitating” the oracle,
re-weighting pseudo-labeled data and enforcing consistency with
the oracle-generated labels. Intuitively, AdaReNet produces a latent
confidence weight vector. For each instance x𝑖 in this ‘clean’ subset,
we can recover both the model prediction ℎ𝜃 (x𝑖 ) and the ground-
truth label y𝑖 . Thus, we can leverage this information to train
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Algorithm 1 Training Algorithm

Input: labeled dataset 𝐷𝐿 = {(x𝑖 , y𝑖 )}𝑁𝑖=1, unlabeled pool
𝐷𝑈 = {x𝑖 }𝑀𝑖=1, Oracle 𝑂 , Budget 𝐵, batch (sample) sizes 𝑘,𝑚.
QueryAL and QuerySSL denote active and semi-supervised
data acquisition functions, respectively.
Output: labeled 𝐷𝑠 , trained models ℎ𝜃 and AdaReNet 𝑐𝜙 .

1: Train student ℎ𝜃 and AdaReNet 𝑐𝜙 on 𝐷𝐿

2: Initialize 𝐷𝑠 ← 𝐷𝐿, 𝐷𝑡 ← 𝐷𝐿

3: while |𝐷𝑠 | ≤ 𝐵 and 𝐷𝑈 ≠ ∅ do
4: 𝑘 = min{𝑘, |𝐷𝑈 |} ⊲ Adjust if |𝐷𝑈 | < 𝑘

5: {x𝑖 }𝑘𝑖=1 ←QueryAL(𝐷𝑈 , 𝑘, ℎ𝜃 ) ⊲ Select instances to label
6: for i=1:k do
7: y𝑖 ← 𝑂 (x𝑖 ) ⊲ Query Oracle for labels
8: 𝐷𝑠 ← 𝐷𝑠 ∪ {(x𝑖 , y𝑖 )} ⊲ Update datasets
9: 𝐷𝑡 ← 𝐷𝑡 ∪ {(x𝑖 , y𝑖 )}
10: 𝐷𝑈 ← 𝐷𝑈 \ {x𝑖 }
11: 𝑚 = min{𝑚, |𝐷𝑈 |} ⊲ Adjust if |𝐷𝑈 | < 𝑚

12: {x𝑖 }𝑚𝑖=1 ←QuerySSL(𝐷𝑈 ,𝑚,ℎ𝜃 ) ⊲ Select pseudo-labeled
13: for i=1:m do
14: ŷ𝑖 ← ℎ𝜃 (x𝑖 ) ⊲ Get predicted label
15: 𝐷𝑠 ← 𝐷𝑠 ∪ {(x𝑖 , ŷ𝑖 )} ⊲ Update datasets
16: 𝐷𝑈 ← 𝐷𝑈 \ {x𝑖 }
17: Retrain student ℎ𝜃 using 𝐷𝑠 ⊲ Update models
18: Retrain AdaReNet 𝑐𝜙 using 𝐷𝑡

19: return final ℎ𝜃 , 𝑐𝜙 , 𝐷𝑠

AdaReNet to predict whether for a particular unlabeled instance
x𝑖 ∈ 𝐷𝑈 , the model output is correct or not, i.e., 1{y𝑖 = ℎ𝜃 (x𝑖 )}.
The teacher loss is defined as 1

|𝐷𝑡 |
∑
𝑖∈𝐷𝑡
L𝑡 (y𝑖 , 𝑐𝜙 (x𝑖 , ℎ𝜃 (x𝑖 ))),

where 𝐷𝑡 includes all oracle labeled data thus far.
In terms of model architecture, for sequence labeling tasks, we

experiment with two options: 1)𝑤𝑖 = 𝜎 (F (v𝑇 x𝑖 ◦ ℎ𝜃 (x𝑖 ))), where
◦ is the Hadamard product, F is a convolutional neural network
with multiple filters, v𝑇 is a feed-forward layer that embeds the
input and 𝜎 is a final feed-forward layer with a sigmoid activation
function and 2)𝑤𝑖 = 𝜎 ( [F 𝑖𝑛 (x𝑖 );F 𝑝𝑟 (ℎ𝜃 (x𝑖 ))]) where [; ] denotes
concatenation, F 𝑖𝑛 and F 𝑝𝑟 are convolutional neural networks
with multiple filters that embed the instance representation and
the student predictions. In our preliminary experiments, we found
that the second approach routinely outperforms the first, so we
present results accordingly 1. Additional model details are provided
in Section 4.3.

4 EXPERIMENTS
We describe the experimental setup, e.g., model architectures and
hyper-parameters. We evaluate AdaReNet across a variety of NLP
sequence labeling and classification tasks, models (neural and tradi-
tional) and data sizes. In addition, we compare with state-of-the-art
semi-supervised methods (combined with active learning) and a
pure active learning setting where data are labeled solely by the
oracle, i.e., all selected instances in each iteration are labeled by a
domain expert. We note that the framework is fairly general and
1We further experimented with substituting the convolutions with an LSTM layer;
there was little variation w.r.t. results, an outcome that is on-par with prior work [23].

can be applied to other tasks such as speech recognition and energy
disaggregation [16, 25].

4.1 Datasets
Named Entity Recognition (NER):We use the CONLL 2003 data
set [55] that includes text instances annotated with Person (PER),
Location (LOC), Organization (ORG) and Miscellaneous (MISC)
entities. We keep the original annotation, which is based on IOB1
labeling 2. The dataset is partitioned into train, testa and testb, with
14987, 3466 and 3684 instances, respectively. We divide train into a
small labeled set 𝐷𝐿 and an unlabeled set 𝐷𝑈 (labels remain hidden
until they are requested from the oracle). Additionally, we treat
testa as validation 𝐷𝑉 and test the final model (trained on data
collected from each experiment) on testb.
Part-of-Speech Tagging (POS):We use the CONLL 2003 data set
(POS labels) [55], with the same splits as for NER.
Text Chunking (CHUNK): We make use of the CONLL 2000
dataset [48] that contains annotated text from the WSJ corpus.
The number of training instances is 8936, and the testing instances
are 2012. There is no predefined split; we randomly sample ≈ 10%
of the training instances as validation data.
Question classification (QC):We evaluate on the (TREC-6) ques-
tion classification dataset [35] consisting of open-domain fact-based
questions classified into six semantic categories. The dataset con-
tains 5452 training examples and 500 test examples. We use ≈ 10%
as validation data.

For NER and CHUNK, the evaluation metric is F1, as defined by
CoNLL [55], i.e., only exact matches between actual and predicted
entities are counted as correct. For POS and QC, the evaluation
metric is accuracy.

4.2 Active Learning Acquisition Functions
The data acquisition functions for collecting oracle annotations
will largely influence the AdaReNet model capability of generating
useful data-driven curricula. Thus, we experiment with two active
learning strategies, covering two main categories: (i) density-based
acquisition strategies, where the geometry of the feature space is
used for selecting diverse samples [14], and (ii) model-based, where
the model prediction is used to calculate uncertainty estimates for
instance selection [34].
Diversity sampling (DS): the selected data point is the most di-
verse of all instances already labeled, i.e., the similarity between
the labeled data and the chosen data point is minimized:

argmin
x∈𝐷𝑈

∑
x′∈𝐷𝑠

𝛿
(
ℎ𝜃 (x), ℎ𝜃 (x′)

)
(2)

Uncertainty sampling (US): The instances for which the model is
the most uncertain are selected. The most commonly used measure
of uncertainty is entropy, where the acquisition strategy becomes

argmax
x∈𝐷𝑈

−
𝐶∑
𝑗=1

𝑝𝜃 (𝑦 𝑗 |x) log 𝑝𝜃 (𝑦 𝑗 |x), (3)

where 𝐶 is the number of classes and the model ℎ𝜃 is used to
calculate 𝑝𝜃 (y|x). For sequence labeling tasks, we use the Total
2https://lingpipe-blog.com/2009/10/14/coding-chunkers-as-taggers-io-bio-bmewo-
and-bmewo/

https://lingpipe-blog.com/2009/10/14/coding-chunkers-as-taggers-io-bio-bmewo-and-bmewo/
https://lingpipe-blog.com/2009/10/14/coding-chunkers-as-taggers-io-bio-bmewo-and-bmewo/
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Figure 2: Comparison on NER with a charLSTM-biLSTM-
CRF student (classifier) model and (red) or without (green)
the AdaReNet teacher, when oracle annotations are col-
lected with Uncertainty (left), and Diversity (right). The
pink lines represent pure active learning data collection.
Best viewed in color.

Token Entropy (TTE) [50]:

argmax
x∈𝐷𝑈

−
𝑇∑
𝑖=1

𝐶∑
𝑗=1

𝑝𝜃 (𝑦𝑖 𝑗 |𝑥𝑖 ) log𝑝𝜃 (𝑦𝑖 𝑗 |𝑥𝑖 ), (4)

where 𝑇 is the total sequence length.

4.3 Implementation Details
For sequence labeling tasks, ℎ𝜃 is implemented as a charLSTM-
biLSTM-CRF model [8]. For the classification tasks, ℎ𝜃 is a word-
level GRU classifier. Models are initialized with 100-dimensional
pre-trained Glove embeddings. The charLSTM-biLSTM-CRF model
includes 25-dimensional character-level embeddings and additional
casing embeddings that map words into common representations
based on the occurrence of digits, capitals or lowercase terms [8].
The word-level, character-level and casing emdeddings are concate-
nated and followed by 0.05 word dropout, 0.5 variational dropout
[13] and one biLSTM layer with 256 hidden neurons, plus a final
CRF layer [31]. The biLSTM classifier consists of one GRU layer
with 256 hidden neurons, 0.5 dropout [21] and a final linear layer.
We train the models with Adam [28], 0.01 initial learning rate, 0.5
learning rate decay and 32 batch-size. For the consistency-based
semi-supervised methods, we incorporate Gaussian noise on the
embedding level as perturbations.

The initial labeled dataset is 100 instances. At each iteration
the active learning and pseudo-labeling components query labels
for 100 instances each (i.e., in total 200 newly annotated exam-
ples per iteration). Then, AdaReNet filters pseudo-labeled instances
accordingly. For consistency-based methods, half of the budget
is annotated by an oracle and the rest is used as additional unla-
beled instances for calculating the unsupervised consistency loss.
We chose an equal annotation batch size for both the oracle and
the model, as we have observed that allocating more instances for
pseudo-labeling results in decreased performance. With respect
to the number of instances labeled in each iteration, preliminary
experiments showed that the smaller data annotation batch sizes
result in more frequent model updates and greater learning effi-
ciency, findings that are on-par with existing literature [4, 38, 42].
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Figure 3: Replacing the NER student (classifier) model with
a traditional CRF. Results with (red) or without (green)
the AdaReNet teacher, with Uncertainty (left) and Diversity
(right). The pink lines represent pure active learning data
collection. Best viewed in color.

4.4 Experimental Results
Since the initial labeled pool is very small (≈ 2 − 3% of the total
annotation budget, depending on the task) we anticipate that a lot of
incorrectly pseudo-labeled instances may be added to the training.
This noise can be detrimental to learning and has been shown
to cause overfitting [61]. To this end, we design a teacher model
termed AdaReNet, that learns to filter out pseudo-labeled instances
with a data-driven curriculum strategy. Our experiments show that
the curriculum designed by AdaReNet improves performance.

In Figure, 2 our baseline is the student ℎ𝜃 (i.e., the charLSTM-
biLSTM-CRF model) without the AdaReNet teacher (green lines)
when data are collected with uncertainty or diversity sampling.
The addition of AdaReNet (red lines) improves model performance.
When compared with a pure active learning scenario, where all in-
stances are passed to the oracle 𝑂 to acquire labels (pink lines), the
AdaReNet can optimize the trade-off between oracle annotations
(domain expert labels) and pseudo-labeling errors to achieve perfor-
mance closer to the optimal case of collecting all training examples
with the oracle. AdaReNet improves performance across all tasks,
e.g., including Chunking and Part-of-Speech Tagging (Figure 4).
Ultimately, as the pool of oracle annotations grows, the student net-
work becomes better at selecting unlabeled data and at producing
pseudo-labels. At this point, removing AdaReNet from the training
process is possible. We leave the design of stopping/removal criteria
for the teacher to future work.

To reduce the total number of parameters the teacher might add
to the training, we designed AdaReNet to share the embedding layer
with the student model. To ensure that AdaReNet improves perfor-
mance beyond what parameter sharing would do, we experiment
with the student architecture. More specifically, we replace the
student model with a traditional CRF model that shares no weights
with the teacher (Figure 3). The performance improvements were
amplified. In other words, this result implies that the AdaReNet
is effective in learning data-driven curricula that help the student
network.

A strong baseline of a predefined curriculum can be based on
a strict threshold [32, 40]. For example, we can filter out pseudo-
labeled instances that do not surpass a predefined confidence thresh-
old, e.g., maxy 𝑝𝜃 (y|x) < 95%. This means that only when the class
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Figure 4: Comparison on Chunking (CHUNK) and Part-of-Speech Tagging (POS) with (red) or without (green) the AdaReNet
teacher, when oracle annotations are collected with active learning (Uncertainty or Diversity). The pink lines represent pure
active learning data collection. Best viewed in color.
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Figure 5: Comparison of the student network with (red) and
without the AdaReNet teacher (green), and with a prede-
fined confidence threshold (blue). Oracle (clean) annotations
collected with Uncertainty (left) or Diversity (right). 𝑥-axis:
F1 for {NER,CHUNK}, Accuracy for {POS, QC}. Best viewed
in color.

probability prediction is above that threshold (i.e., the model is
almost absolutely certain about its prediction) then the instance
is pseudo-labeled and used during training [32, 44]. For sequence
labeling, model confidence is defined here as

[
maxy 𝑝𝜃 (y|x)

]1/𝑇
where 𝑇 is the sequence length. We conduct experiments to evalu-
ate whether such a strict predefined threshold would be sufficient
in terms of test performance, i.e., under which conditions there
is no need for data-driven curricula. The AdaReNet outperforms
such baseline in two tasks, Named Entity Recognition (NER) and
Question Classification (QC), but provides relatively small improve-
ments on easier tasks, such as Chunking and Part-of-Speech Tag-
ging (Figure 5 and Table 1). Overall, AdaReNet results in up to 10%
performance gains w.r.t. the next best pseudo-labeling strategy.

We also compare with consistency-based semi-supervised meth-
ods that incorporate unlabeled data as additional regularization [44].
Given an unlabeled example, Π model [30] computes consistency
between two model predictions, under model stochasticity, e.g.,
dropout. Virtual Adversarial Training (VAT) [41] finds the worst
local perturbation that will alter the model predictions the most.
Mean Teachers (MT) [54] uses an exponential moving average of
model parameters as a teacher that produces the targets for the
student model. Finally, Interpolation Consistency Training (ICT)
[57] averages over multiple augmented versions of an instance and
incorporates MixUp, i.e., linearly interpolating input instances and
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Figure 6: Ratio of discarded incorrect pseudo-labels in each
round, on Chunking (CHUNK) and Named Entity Recogni-
tion (NER) tasks, with Uncertainty Sampling. Best viewed in
color.

Table 1: Comparison with baseline methods.
Uncertainty Diversity

Method NER CHUNK POS QC NER CHUNK POS QC
F1 Acc F1 Acc

AdaReNet 0.79 0.86 0.99 0.54 0.75 0.83 0.98 0.53
Student 0.71 0.84 0.99 0.40 0.60 0.82 0.98 0.25
PL(0.95%) [32, 40] 0.72 0.86 0.99 0.46 0.65 0.81 0.97 0.46
Πmodel [30] 0.68 0.85 0.99 0.46 0.65 0.81 0.98 0.42
ICT [57] 0.72 0.85 0.99 0.41 0.63 0.83 0.98 0.30
MT [54] 0.73 0.86 0.99 0.43 0.64 0.82 0.98 0.44
VAT [41] 0.75 0.85 0.98 0.51 0.63 0.82 0.99 0.41

output labels [62]. AdaReNet surpasses all baselines on {NER, QC}
tasks and maintains comparable performance with consistency-
based semi-supervised algorithms (Table 1).

Finally, in Figure 6, for each round and two tasks, CHUNK and
NER, we present the ratio of noisy pseudo-labeled instances that
are discarded versus the remaining ones that the AdaReNet was
not able to identify and remove, with the best performing active
learning strategy (uncertainty). The AdaReNet teacher exhibits
approximately 11 − 35% labeling noise reduction rates, depending
on the task.

5 CONCLUSIONS AND FUTUREWORK
In this work, we present a collaborative teacher-student method
that expands the training set with both human and pseudo labels.
The teacher, termed AdaReNet, learns a data-driven curriculum
strategy to select reliable pseudo-labeled data that can be confi-
dently used during training. In the future, we hope to test our
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method with additional semi-supervised methods and batch active
learning algorithms that take into account the redundancy among
instances.
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