Block Models

Kristen Vaccaro, Ismini Lourentzou, Casey Hanson

University of Illinois, Urbana-Champaign

Belief Propagation and Block Models

Recovery of Block Models

Block Models

Purpose

Previous Work

Block Models

Problem Definition

Solution outline

Broadcasting on Trees

Graph & Tree Reconstruction

Proof

Algorithm

Purpose

Recovery of Block Models

Purpose: community detection

Graph with

- nodes = individuals divided into communities
- edges = connections between individuals more likely in-class than between groups

Figure: Denser connections within communities than between them

Purpose

Use connection information to infer community affiliation

Figure: Goal: recover community affiliations

Previous Work

Recovery of Block Models

Recover exact communities For dense graphs Require a, b poly(n)

- Dyer and Frieze
- Snijders and Nowicki
- Condon and Karp

Spectral algorithm, modularity maximization Require a, b O(log(n))

- McSherry
- Bickel and Chen

000

Recovery of Block Models

Previous Work (2)

 $O(\log(n))$ important!

If average degree:

log(n)

< log(n)

Constant

Conjectured threshold

Recover communities:

exactly whp

impossible to recover exactly

cannot beat constant fraction correct

cannot beat random guessing

Constant average degree

Motivation:

Many real networks sparse (most avg degree ≤ 20) More realistic to expect imperfect recovery

- Only one algorithm guaranteed to do anything
- Coja-Oghlan (2010)
- Produced communities which have a better-than-50% overlap with the true communities

Sparse Block Models

Block model as described above

Block Models

- \triangleright nodes = n nodes divided into communities
- edges = drawn independently at random

```
a/n = probability of an in-class edge will appear
b/n = probability of a between-class edge will appear
```

Here:

a, b fixed n tends to infinity Only two classes (+, -)

classes (+, -) are roughly equal size

Sparsest non-trivial case

Problem Definition

Block Models

In a sparse block model, how accurately one can recover the underlying communities?

- upper bound on the recovery accuracy (previous work)
- upper bound is tight when the signal to noise ratio is sufficiently high
- ▶ give an algorithm* which performs as well as the upper bound

^{*}The algorithm leverages belief propagation as an initial guess at the communities and then tries to locally improve that initial guess.

Connection between the block model and broadcasting on trees

Core idea:

- Neighborhood in G looks like a tree with branching number d = (a + b)/2
- Labels on the neighborhood look like they came from a broadcast process with $\eta = \frac{b}{a+b}$
- $\theta^2 d = (1 2\eta)^2 d = \frac{(a-b)^2}{2(a+b)}$

Block Models

Threshold for community reconstruction is the same as the proven threshold for tree reconstruction

Solution outline

Block Models

Show that:

- 1. Graph cluster problem is harder than tree reconstruction problem (smaller optimal accuracy)
- 2. Graph cluster problem is easier than robust tree reconstruction problem (higher accuracy)
- 3. Tree reconstruction as hard as robust tree reconstruction

- Information transmitted from root
- Send down edges
- Each edge:
 - bit reversed w/ prob ϵ
 - errors occur independently

Common question:

What correlation btw inferred root label from leaves and true label?

Belief Propagation

Figure: Infer root label from leaf labels, given some probability of transmission error between nodes

Theorem

If
$$\frac{|a-b|}{\sqrt{a+b}} > \sqrt{2}$$
 then

node labels can be inferred with accuracy better than 50%

When the signal-to-noise ratio is sufficiently high, then adding extra noise on the leaves of a large tree does not hurt our ability to guess the label of the root given the labels of the leaves.

$$\frac{|\mathsf{a}-\mathsf{b}|}{\sqrt{\mathsf{a}+\mathsf{b}}} > \sqrt{2} \Leftrightarrow \frac{|\mathsf{a}-\mathsf{b}|}{\sqrt{2(\mathsf{a}+\mathsf{b})}} > 1 \Leftrightarrow \frac{(\mathsf{a}-\mathsf{b})^2}{2(\mathsf{a}+\mathsf{b})} > 1 \Leftrightarrow d\theta^2 > 1$$

Definition

Given $\eta \in [0, \frac{1}{2})$ and a tree T, the broadcasting process on T is defined as follows:

let σ_{ρ} be + or - with a probability $\frac{1}{2}$.

Then, for each u such that σ_u is defined and for each $v \in L_1(u)$, let $\sigma_v = \sigma_u$ with probability $1 - \eta$ and $\sigma_v = -\sigma_o$ otherwise

where $L_k(u)$ are the kth-level decedents of u and $i \in C(u)$ iff $ui \in L_1(u)$ (u's children)

Theorem (Tree reconstruction threshold)

Let $\theta=1-2\eta$ and d be the branching number of T. Then $\mathbb{E}[\sigma_{\rho}|\sigma_{u}:u\in L_{k}(\rho)]\to 0$ as $k\to\infty$ iff $d\theta^{2}\leq 1$

If $d\theta^2>1$ then $\forall k$ there is an algorithm which guesses σ_{ρ} given $\sigma_{L_k}(\rho)$ and succeeds with probability bounded away from $\frac{1}{2}$

Definition

Given $\delta \in [0, \frac{1}{2}]$ and a broadcasting process σ on a tree T, the noisy broadcasting process on T is defined by independently taking $\tau_u = -\sigma_u$ with probability δ and $\tau_u = \sigma_u$ otherwise

For a certain range of parameters, the presence of noise at leaves does not affect the accuracy with which the root can be reconstructed.

Belief Propagation and Tree Reconstruction

Block Models

Optimal estimator of σ_{ρ} given $\sigma_{L_{k}}(\rho)$: $sgn(X_{\rho,k})$ where $X_{\rho,k} = 2Pr(\sigma_{\rho} = +|\sigma_{L_{\nu}(\rho)}) - 1$ expected gain = $\mathbb{E}|Pr(\sigma_{\rho} = +|\sigma_{L_{\nu}(\rho)}) - \frac{1}{2}|$

Definition (Tree reconstruction accuracy)

The probability of correctly inferring σ_{ρ} given the labels at infinity $p_T(a,b) = \frac{1}{2} + \lim_{k \to \infty} \mathbb{E} |Pr(\sigma_\rho = +|\sigma_{L_k(\rho)}) - \frac{1}{2}|$ where $\eta = \frac{b}{a+b}$

Definition (Graph reconstruction accuracy)

Block Models

Consider the block model on n vertices with parameters a,b where a + b > 1.

Let
$$p_{G,n}(a,b) = \frac{1}{2} + \sup_{f} \mathbb{E} |\frac{1}{n} \sum_{u} 1(f(u,G) = \sigma_u) - \frac{1}{2}|$$

to be the best reconstruction probability for the cluster.

Let
$$p_G = \limsup_{n} p_{G,n}$$

 p_G is the optimal fraction of nodes that can be reconstructed correctly.

Theorem

$$p_G(a,b) \le p_T(a,b)$$
 (Proof in previous work)

Block Models

Show that:

- 1. Graph cluster problem is harder than tree reconstruction problem (smaller optimal accuracy)
- 2. Graph cluster problem is easier than robust tree reconstruction problem (higher accuracy)
- 3. Tree reconstruction as hard as robust tree reconstruction

Graph & Tree Reconstruction

Graph reconstruction and Robust Tree Reconstruction

Definition (Robust tree reconstruction accuracy)

Consider the noisy tree broadcast process with an additional $\delta \in$ $[0,\frac{1}{2}]$ and some extra variables $\{\tau_u:u\in\mathcal{T}\}$, which are independent conditioned on $\{\sigma_u : u \in T\}$ and satisfy $Pr(\tau_u = \sigma_u) = 1 - \delta$

Define the robust reconstruction probability as:

$$\tilde{p}_{\mathcal{T}}(a,b) = \frac{1}{2} + \lim_{\delta \to \frac{1}{2}} \lim_{k \to \infty} \mathbb{E}|Pr(\sigma_{\rho} = +|\tau_{L_k(\rho)}) - \frac{1}{2}|$$

- ightharpoonup noise in σ propagates down the tree
- \triangleright noise in τ does not propagate, therefore not important

What is left to show

Consider an algorithm for reconstructing the block models which satisfies that with high probability it labels $\frac{1}{2} + \delta$ of the nodes accurately. Then the algorithm can be used in a black box manner to provide an algorithm whose reconstruction accuracy (with high probability) is $\tilde{p}_{\tau}(a,b)$

Block Models

Show that:

- 1. Graph cluster problem is harder than tree reconstruction problem (smaller optimal accuracy)
- 2. Graph cluster problem is easier than robust tree reconstruction problem (higher accuracy)
- 3. Tree reconstruction as hard as robust tree reconstruction

What is left to show (2)

Theorem (1.)

There exists a constant C such that if $(a - b)^2 \ge C(a + b)$ then $p_{G}(a,b) = p_{T}(a,b)$

Theorem (2.)

There exists a constant C such that if $(a - b)^2 \ge C(a + b)$ then $\tilde{p}_T(a,b) = p_T(a,b)$

Block Models

Solution outline

Show that:

- 1. Graph cluster problem is harder than tree reconstruction problem (smaller optimal accuracy)
- 2. Graph cluster problem is easier than robust tree reconstruction problem (higher accuracy)
- 3. Tree reconstruction as hard as robust tree reconstruction

Graph & Tree Reconstruction

Magnetization

Definition

$$X_{u,k} = Pr(\sigma_u = + \mid \sigma_{L_k(u)}) - Pr(\sigma_u = - \mid \sigma_{L_k(u)})$$

$$x_k = \mathbb{E}(X_{u,k} \mid \sigma_u = +)$$

 $X_{u,k}$ is the magnetization of u given $\sigma_{L_{\nu}(u)}$

 $\frac{(1+x_k)}{2}$ is the probability of estimating σ_{ρ} correctly given $\sigma_{L_k(\rho)}$

Graph & Tree Reconstruction

Definition

$$Y_{u,k} = Pr(\sigma_u = + \mid \tau_{L_k(u)}) - Pr(\sigma_u = - \mid \tau_{L_k(u)})$$

$$y_k = \mathbb{E}(Y_{u,k} \mid \sigma_u = +)$$

 $Y_{u,k}$ is the magnetization of u given $\sigma_{L_k(u)}$

 $\frac{(1+y_k)}{2}$ is the probability of estimating σ_ρ correctly given $\tau_{L_k(\rho)}$

Block Models

Proof of Theorem 1

Basic assumptions

Consider the broadcast process on the infinite $\frac{a+b}{2}$ = d-ary tree with parameter $\eta = \frac{a}{a+b}$. Set $\theta = 1-2\eta$. For any $0 < \theta^* < 1$, there is some d^* such that if $\theta > \theta^*$ and $d > d^*$ then $\tilde{p}_{T}(a,b) = p_{T}(a,b)$

Under these assumptions:

$$\lim_{k\to\infty} x_k = \lim_{k\to\infty} y_k$$

Outline of proof

First show that when $\theta^2 d$ is large, both the exact reconstruction and the noisy reconstruction do quite well.

Studying the estimator of the most common label among $\sigma_{L_k(\rho)}$

Suppose $d\theta^2 > 1$.

Define:

$$S_{u,k} = \sum_{v \in uL_k} \sigma_v$$

$$\widetilde{S}_{u,k} = \sum_{v \in uL_k} \tau_v.$$

Goal: estimate σ_{ρ} by $sgn(S_{\rho,k})$ or $sgn(S_{\rho,k})$

Simple majority method (2)

Block Models

First moment

Lemma (1)

$$\mathbb{E}^+ S_{
ho,k} = \theta^k d^k$$

 $\mathbb{E}^+ \widetilde{S}_{
ho,k} = (1 - 2\delta) \theta^k d^k$

Second moment

Lemma (2)

$$\begin{split} & \textit{Var}^{+} \textit{S}_{\rho,k} = 4\eta (1-\eta) d^{k} \frac{(\theta^{2}d)^{k}-1}{\theta^{2}d-1} \\ & \textit{Var}^{+} \widetilde{\textit{S}}_{\rho,k} = 4 d^{k} \delta (1-\delta) + 4(1-2\delta)^{2} \eta (1-\eta) d^{k} \frac{(\theta^{2}d)^{k}-1}{\theta^{2}d-1} \end{split}$$

Simple majority method (3)

Lemma (3)

If $d\theta^2 > 1$ then

$$rac{Var^+S_k}{(\mathbb{E}^+S_k)^2}
ightarrowrac{4\eta(1-\eta)}{ heta^2d}$$
 as $k
ightarrow\infty$

$$rac{\mathit{Var}^+\widetilde{S}_k}{(\mathbb{E}^+\widetilde{S}_k)^2} o rac{4\eta(1-\eta)}{ heta^2d}$$
 as $k o \infty$

Simple majority method (4)

The estimators $sgn(S_k)$ and $sgn(\widetilde{S}_k)$ succeed with probability at least $\left[1-\frac{4\eta(1-\eta)}{\alpha^2}\right]$ as $k\to\infty$

The optimal estimator of σ_{ρ} given $\sigma_{L_{\nu}(\rho)}$ is $sgn(X_{\rho,k})$ with success probability $\frac{(1+x_k)}{2}$

 $\frac{(1+x_k)}{2}$ must be larger than the success probability of $sgn(S_k)$

Simple majority method (5)

Block Models

Lemma (4)

If
$$d heta^2 > 1$$
 then $x_k \geq [1 - rac{10\eta(1-\eta)}{ heta^2 d}]$ for large k

(Similarly for v_k and $sgn(S_k)$)

Since $X_{u,k} \leq 1$ and $x_k = \mathbb{E}(X_{u,k} \mid \sigma_u = +)$ we can apply Markov's inequality to show that $X_{u,k}$ is large with high probability.

$$\forall v \in V^i$$
 $Pr(v_*^+) \to P_T(a, b)$
$$Pr(Y_{v,R}(\epsilon) = \sigma_v) = P_T(a, b)$$

Algorithm 1 Optimal graph reconstruction algorithm

Block Models

```
1: R \leftarrow \lfloor \frac{1}{10 \log(2(a+b))} \log n \rfloor
2: W_G^+, W_G^- \leftarrow Partition(G)

 W<sup>+</sup>, W<sup>-</sup> ← Ø

 4. for all v ∈ V do
          W_{v}^{+}, W_{v}^{-} \leftarrow \text{Partition}(G \setminus B(v, R-1))
          relabel W_v^+, W_v^- so that |W_v^+\Delta W_c^+| \le n/2.
          define \xi \in \{+, -\}^{S(v,R)} by \xi_u = i if u \in W_v^i
           add v to W_{r}^{Y_{\rho,R}(\xi)}
9: end for
10: return W<sup>+</sup>, W<sup>-</sup>
```

Assign initial guess for all node labels Loop:

Sample a node

Delete local neighborhood

Use nodes at distance R & belief propagation to hypothesize label

